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Preliminaries

Fault Tolerant Distance Preserver

Input: Graph G = (V, E), pairs P C V x V, integer f.
Output: Subgraph H of G, such that forall FC E, |F| < f

dist(s,t, G \ F) =dist(s,t,H\ F), for all (s, t) € P.
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Preliminaries

Fault Tolerant Distance Preserver

Input: Graph G = (V, E), pairs P C V x V, integer f.
Output: Subgraph H of G, such that forall FC E, |F| < f

dist(s,t, G \ F) =dist(s,t,H\ F), for all (s, t) € P.

Source-Wise Distance Preserver: P=S x V
Subset Distance Preserver: P=S x S
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Known Results

Bodwin et al. (2017)

For every directed or undirected unweighted graph G = (V, E), integer f > 1, one can
construct in time O(fmn) an f-fault tolerant S x V preserver of size é(f|5|1/2fn2_1/2f).
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Known Results

Restoration Lemma, Afek et al. (2002)

For graph G = (V,E), s,t € V and failing edge e, s ~~ t shortest path in G \ e can be
represented as concatenation of two shortest paths in the original G, s ~ x and x ~> t.
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Known Results

Restoration Lemma, Afek et al. (2002)
For graph G = (V,E), s,t € V and failing edge e, s ~~ t shortest path in G \ e can be
represented as concatenation of two shortest paths in the original G, s ~ x and x ~> t.

Concatenation of any shortest paths. Hard to trivially generate a small canonical path
family.
Bodwin and Parter (2021)

There's a randomized algorithm to generate a canonical path family of size 2 for all pair
of nodes.
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Our Results

Canonical Path Family

There's an O(mn) deterministic algorithm to generate a canonical path family of size 2
for all pair of nodes.
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New Structure

Fault Tolerant Distance Preserver

Input: Graph G = (V,E), pairs P C V x V, integer f.
Output: Subgraph H of G, such that for all F C E, |F| < f and (s,t) € P,

dist(s,t, G \ F) =dist(s, t,H \ F).
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New Structure

Fault Tolerant Distance Preserver

Input: Graph G = (V,E), pairs P C V x V, integer f.
Output: Subgraph H of G, such that for all F C E, |F| < f and (s, t) € P,

dist(s,t, G \ F) =dist(s, t,H \ F).

(f,1)-preserver

Input: Graph G = (V,E), pairs P C V x V, integer f.
Output: Subgraph H of G, such that for all F C E, |F| < f, (s,t) € P and edge e such
that dist(s, t, G \ F) =dist(s,t, G \ (F Ue)), then

dist(s,t, G\ (FUe)) =dist(s, t, H\ (F Ue)).
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Our Results

(f,1)-sourcewise preserver computation

For f > 1, for an undirected, unweighted n-vertex graph G = (V, E) and source S C V/,
we can compute an (f,1)-S x V-preserver for G in O(fn?=1/2|5|1/2").

For f =0, we can compute a (0, 1)-fault tolerant S x V preserver with O(|S|n) edges in
O(m + n) time.

This matches the best construction of f-FT S x V preserver given by Bodwin et al (2017).

8/15



Motivation

(0,1) - {s} x {t} preserver is the canonical path family of size 2.
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O O—CC OO
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Motivation

(0,1) - {s} x {t} preserver is the canonical path family of size 2.
Two paths from s, t which intersect only on distance cut edges.

O O—CC OO

Subset distance preservers

An (f,1)-sourcewise distance preserver is an (f + 1)-subset distance preserver.

Just use the restoration lemma.

9/15



(0, 1)-preserver Construction

(0, 1)-sourcewise preserver

Given a graph G and source set S, we can compute a (0, 1)-sourcewise preserver of size

O(|S|n) in O(|S|m) time.
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(0, 1)-preserver Construction

(0, 1)-sourcewise preserver
Given a graph G and source set S, we can compute a (0, 1)-sourcewise preserver of size
O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut
edges.
Georgiadis and Tarjan (2012)

Given a directed graph G = (V/, E) and a designated source r, a pair of independent trees
T1, T rooted at r are computable in O(m + n) time.
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Given a graph G and source set S, we can compute a (0, 1)-sourcewise preserver of size
O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut
edges.

Georgiadis and Tarjan (2012)

Given a directed graph G = (V/, E) and a designated source r, a pair of independent trees
T1, T rooted at r are computable in O(m + n) time.

e Construct shortest path DAG Ds = (V, Ep C E), such that it only contains edges
dist(s, y, G) = dist(s, x, G) + 1.
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e Construct shortest path DAG Ds = (V, Ep C E), such that it only contains edges
dist(s, y, G) = dist(s, x, G) + 1.
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(0, 1)-preserver Construction

(0, 1)-sourcewise preserver
Given a graph G and source set S, we can compute a (0, 1)-sourcewise preserver of size
O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut
edges.
Georgiadis and Tarjan (2012)

Given a directed graph G = (V/, E) and a designated source r, a pair of independent trees
T1, T rooted at r are computable in O(m + n) time.

e Construct shortest path DAG Ds = (V, Ep C E), such that it only contains edges
dist(s, y, G) = dist(s, x, G) + 1.

e Compute T} and T2 rooted at s using the above lemma.

® Uses(THU T2) is a (0, 1)-preserver.
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(f,1)-sourcewise preserver Construction

Canonical Path Family

For each (s,t) € S x V, we can implicitly compute shortest paths P ; and Qs ; which
intersect only on (s, t)-distance cut edges in O(|S|n).

Follows directly from (0, 1)-sourcewise preserver construction.

11/15



(f,1)-sourcewise preserver Construction

Canonical Path Family
For each (s,t) € S x V, we can implicitly compute shortest paths P ; and Qs ; which
intersect only on (s, t)-distance cut edges in O(|S|n).

Follows directly from (0, 1)-sourcewise preserver construction.
Reuse Bodwin et al's construction of f-FT sourcewise preserver but replace each shortest
path with the pair of above shortest paths.
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(f,1)-sourcewise Preserver Construction

Algorithm 1: Compute-Incident-Edges(G, S, t, f).

if f =0 then

| Return {LastE(Ps), LastE(Qs¢) | s € S}

end

L« /8f|S|nlogn;

R < uniformly random subset of V \ {t} of size L;

for s€ S do
(Ps,t, Qs,¢) < Pair of (s, t)-shortest-paths;
We + {ue V| 1< dist(u,t,Pst U Qst) <

8nflogn/L}

end

G+ (V7 E \ USGS E(PSJ) U E(Qs,t));

S (Uses Ws) UR;

Return Compute-Incident-Edges(G’, S, t,f — 1);
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(f,1)-sourcewise Preserver Construction

To Show: Last edge of a short-
est path in G\ (FUe) lies in the

if f =0 then output.
| Return {LastE(Ps), LastE(Qs¢) | s € S}
end
L« /8f|S|nlogn;
R < uniformly random subset of V \ {t} of size L;
for s€ S do
(Ps,t, Qs,¢) < Pair of (s, t)-shortest-paths;
We + {ue V| 1< dist(u,t,Pst U Qst) <
8nflogn/L}
end
G+ (V7 E \ USGS E(PSJ) U E(Qs,t));
S (Uses Ws) UR;
Return Compute-Incident-Edges(G’, S, t,f — 1);

Algorithm 2: Compute-Incident-Edges(G, S, t, f).
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(f,1)-sourcewise Preserver Construction

Algorithm 3: Compute-Incident-Edges(G, S, t, f).

if f =0 then

| Return {LastE(Ps), LastE(Qs¢) | s € S}

end

L« /8f|S|nlogn;

R < uniformly random subset of V \ {t} of size L;

for s€ S do
(Ps,t, Qs,¢) < Pair of (s, t)-shortest-paths;
We + {ue V| 1< dist(u,t,Pst U Qst) <
8nflogn/L}

end

G+ (V7 E \ USGS E(PSJ) U E(Qs,t));

S (Uses Ws) UR;

Return Compute-Incident-Edges(G’, S, t,f — 1);

To Show: Last edge of a short-
est path in G\ (FUe) lies in the
output.

Sketch: Last edge of Ps ;U Qs ¢
will be chosen. So assume F N

(Ps,t U Qs,t) 7& @
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(f,1)-sourcewise Preserver Construction

Algorithm 4: Compute-Incident-Edges(G, S, t, f).

if f =0 then

| Return {LastE(Ps), LastE(Qs¢) | s € S}

end

L« /8f|S|nlogn;

R < uniformly random subset of V \ {t} of size L;

for s€ S do
(Ps,t, Qs,¢) < Pair of (s, t)-shortest-paths;
We + {ue V| 1< dist(u,t,Pst U Qst) <
8nflogn/L}

end

G+ (V7 E \ USGS E(PSJ) U E(Qs,t));

S (Uses Ws) UR;

Return Compute-Incident-Edges(G’, S, t,f — 1);

To Show: Last edge of a short-
est path in G\ (FUe) lies in the
output.

Sketch: Last edge of Ps ;U Qs ¢
will be chosen. So assume F N
(Ps,t U Qs,t) 7& @

Consider shortest paths Ps;F
an'd Qstr in G\ F. WLOG
€ ¢ Ps,t,F-
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(f,1)-sourcewise Preserver Construction

To Show: Last edge of a short-

Algorithm 5: Compute-Incident-Edges(G, S, t, f). est path in G\ (FUe) lies in the

if f =0 then output.
| Return {LastE(Ps), LastE(Qs¢) | s € S} Sketch: Last edge of Ps ;U Qs ¢
end will be chosen. So assume F N
L+ \/8f|S|nlog n; (Ps.t U Qs ) # 0.
R < uniformly random subset of V \ {t} of size L; Consider shortest paths Ps
for s€ S do an'd Qstr in G\ F. WLOG
(Ps,t, Qs,¢) < Pair of (s, t)-shortest-paths; ed Pstr.
Ws «+—{ueV |1<dist(u,t,Ps:UQsy) < ® Find last x € S’ on P+ F,
8nflogn/L} ® X ~~ t shortest path won't
er:d internally intersect
G (V,E\Uses E(Pst) UE(Qsyr)); Uves(Put U Que).

S (Uses Ws) UR;

. ° X lies in th
Return Compute-Incident-Edges(G’, S, t,f — 1); X ~> tlies in the

(f — 1,1)-preserver of G'.
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Other Applications

Distance Labelling Schemes

For f >0, and n-vertex unweighted undirected graph, there is an (f + 1)-fault-tolerant
distance labeling scheme that assigns each vertex a label of O(fnz_l/zf log n) bits that
can be computed in O(fmn) time each, and O(|S|m) each for f = 0.

Subset Replacement Path Problem

The input is a graph G = (V, E) and a set of source vertices S, and for every pair of
vertices s, t € S and failing edge e € E, report dist(s, t, G \ e).

Given a graph G = (V, E) and a set of source vertices S, we can solve the problem in
O(|S|m) + O(|S[?n) in the word-RAM model.
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Open Questions

(f, k)-preserver

Input: Graph G = (V,E), pairs P C V x V, integer f.

Output: Subgraph H of G, such that for all F C E, |F| < f, (s,t) € P and K C E such
that |K| < k and dist(s, t, G \ F) =dist(s, t, G \ (F U K)),

dist(s,t, G \ (FUK)) =dist(s, t, H \ (F UK)), for all (s, t) € P.
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Open Questions

(f, k)-preserver

Input: Graph G = (V,E), pairs P C V x V, integer f.
Output: Subgraph H of G, such that for all F C E, |F| < f, (s,t) € P and K C E such
that |K| < k and dist(s, t, G \ F) =dist(s, t, G \ (F U K)),

dist(s,t, G \ (FUK)) =dist(s, t, H \ (F UK)), for all (s, t) € P.

® |s it possible to construct (f, k)-preserver more efficiently than (f + k)-preservers?

® For a (0, k)-preserver for pair of vertices s, t, is it possible to bound
#{u e V | dist(u, t,H) < a} for any a > 07
e Can restoration lemma for k-edge failures be used with (f, k)-preservers?
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Thank youl!
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