A Deterministic Approach to Shortest Path Restoration in Edge Faulty Graphs STACS 2025 Jena, Germay

Keerti Choudhary, Rishabh Dhiman

Department of Computer Science and Engineering Indian Institute of Technology Delhi

4 March 2025

- 1. Preliminaries
- 2. Known Results
- 3. Our Results
- 4. Open Questions

Fault Tolerant Distance Preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$

 $dist(s, t, G \setminus F) = dist(s, t, H \setminus F)$, for all $(s, t) \in P$.

Fault Tolerant Distance Preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$

$$dist(s, t, G \setminus F) = dist(s, t, H \setminus F)$$
, for all $(s, t) \in P$.

Source-Wise Distance Preserver: $P = S \times V$ Subset Distance Preserver: $P = S \times S$

Bodwin et al. (2017)

For every directed or undirected unweighted graph G = (V, E), integer $f \ge 1$, one can construct in time O(fmn) an f-fault tolerant $S \times V$ preserver of size $\tilde{O}(f|S|^{1/2^{f}}n^{2-1/2^{f}})$.

Restoration Lemma, Afek et al. (2002)

For graph G = (V, E), $s, t \in V$ and failing edge $e, s \rightsquigarrow t$ shortest path in $G \setminus e$ can be represented as concatenation of two shortest paths in the original $G, s \rightsquigarrow x$ and $x \rightsquigarrow t$.

Restoration Lemma, Afek et al. (2002)

For graph G = (V, E), $s, t \in V$ and failing edge $e, s \rightsquigarrow t$ shortest path in $G \setminus e$ can be represented as concatenation of two shortest paths in the original $G, s \rightsquigarrow x$ and $x \rightsquigarrow t$.

Concatenation of *any* shortest paths. Hard to trivially generate a small canonical path family.

Restoration Lemma, Afek et al. (2002)

For graph G = (V, E), $s, t \in V$ and failing edge $e, s \rightsquigarrow t$ shortest path in $G \setminus e$ can be represented as concatenation of two shortest paths in the original $G, s \rightsquigarrow x$ and $x \rightsquigarrow t$.

Concatenation of *any* shortest paths. Hard to trivially generate a small canonical path family.

Bodwin and Parter (2021)

There's a randomized algorithm to generate a canonical path family of size 2 for all pair of nodes.

Canonical Path Family

There's an O(mn) deterministic algorithm to generate a canonical path family of size 2 for all pair of nodes.

Fault Tolerant Distance Preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$ and $(s, t) \in P$,

 $dist(s, t, G \setminus F) = dist(s, t, H \setminus F).$

Fault Tolerant Distance Preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$ and $(s, t) \in P$,

 $dist(s, t, G \setminus F) = dist(s, t, H \setminus F).$

(f, 1)-preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$, $(s, t) \in P$ and edge e such that dist $(s, t, G \setminus F) = dist(s, t, G \setminus (F \cup e))$, then

 $dist(s, t, G \setminus (F \cup e)) = dist(s, t, H \setminus (F \cup e)).$

(f, 1)-sourcewise preserver computation

For $f \ge 1$, for an undirected, unweighted *n*-vertex graph G = (V, E) and source $S \subseteq V$, we can compute an (f, 1)- $S \times V$ -preserver for G in $\tilde{O}(fn^{2-1/2^f}|S|^{1/2^f})$. For f = 0, we can compute a (0, 1)-fault tolerant $S \times V$ preserver with O(|S|n) edges in O(m + n) time.

This matches the best construction of f-FT $S \times V$ preserver given by Bodwin et al (2017).

(0,1) - $\{s\} \times \{t\}$ preserver is the canonical path family of size 2.

(0,1) - $\{s\} \times \{t\}$ preserver is the canonical path family of size 2. Two paths from s, t which intersect only on distance cut edges.

(0,1) - $\{s\} \times \{t\}$ preserver is the canonical path family of size 2. Two paths from s, t which intersect only on distance cut edges.

Subset distance preservers

An (f, 1)-sourcewise distance preserver is an (f + 1)-subset distance preserver.

Just use the restoration lemma.

(0, 1)-sourcewise preserver

Given a graph G and source set S, we can compute a (0,1)-sourcewise preserver of size O(|S|n) in O(|S|m) time.

(0, 1)-sourcewise preserver

Given a graph G and source set S, we can compute a (0,1)-sourcewise preserver of size O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut edges.

Georgiadis and Tarjan (2012)

Given a directed graph G = (V, E) and a designated source r, a pair of independent trees T_1 , T_2 rooted at r are computable in O(m + n) time.

(0, 1)-sourcewise preserver

Given a graph G and source set S, we can compute a (0,1)-sourcewise preserver of size O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut edges.

Georgiadis and Tarjan (2012)

Given a directed graph G = (V, E) and a designated source r, a pair of independent trees T_1 , T_2 rooted at r are computable in O(m + n) time.

Construct shortest path DAG D_s = (V, E_D ⊆ E), such that it only contains edges dist(s, y, G) = dist(s, x, G) + 1.

(0, 1)-sourcewise preserver

Given a graph G and source set S, we can compute a (0,1)-sourcewise preserver of size O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut edges.

Georgiadis and Tarjan (2012)

Given a directed graph G = (V, E) and a designated source r, a pair of independent trees T_1 , T_2 rooted at r are computable in O(m + n) time.

- Construct shortest path DAG D_s = (V, E_D ⊆ E), such that it only contains edges dist(s, y, G) = dist(s, x, G) + 1.
- Compute T_s^1 and T_s^2 rooted at s using the above lemma.

(0, 1)-sourcewise preserver

Given a graph G and source set S, we can compute a (0, 1)-sourcewise preserver of size O(|S|n) in O(|S|m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut edges.

Georgiadis and Tarjan (2012)

Given a directed graph G = (V, E) and a designated source r, a pair of independent trees T_1 , T_2 rooted at r are computable in O(m + n) time.

- Construct shortest path DAG D_s = (V, E_D ⊆ E), such that it only contains edges dist(s, y, G) = dist(s, x, G) + 1.
- Compute T_s^1 and T_s^2 rooted at s using the above lemma.
- $\bigcup_{s\in S} (T_s^1 \cup T_s^2)$ is a (0,1)-preserver.

Canonical Path Family

For each $(s,t) \in S \times V$, we can implicitly compute shortest paths $P_{s,t}$ and $Q_{s,t}$ which intersect only on (s,t)-distance cut edges in O(|S|n).

Follows directly from (0, 1)-sourcewise preserver construction.

Canonical Path Family

For each $(s,t) \in S \times V$, we can implicitly compute shortest paths $P_{s,t}$ and $Q_{s,t}$ which intersect only on (s,t)-distance cut edges in O(|S|n).

Follows directly from (0, 1)-sourcewise preserver construction.

Reuse Bodwin et al's construction of f-FT sourcewise preserver but replace each shortest path with the pair of above shortest paths.

Algorithm 1: Compute-Incident-Edges(G, S, t, f).

if f = 0 then

$$\mathsf{Return} \ \{\mathsf{LastE}(P_{s,t}),\mathsf{LastE}(Q_{s,t}) \mid s \in S\};$$

end

 $L \leftarrow \sqrt{8f |S| n \log n};$ $R \leftarrow \text{uniformly random subset of } V \setminus \{t\} \text{ of size } L;$ for $s \in S$ do $\begin{vmatrix} (P_{s,t}, Q_{s,t}) \leftarrow \text{Pair of } (s, t) \text{-shortest-paths}; \\ W_s \leftarrow \{u \in V \mid 1 \leq \text{dist}(u, t, P_{s,t} \cup Q_{s,t}) \leq \\ 8nf \log n/L \} \end{vmatrix}$

end

$$G' \leftarrow (V, E \setminus \bigcup_{s \in S} E(P_{s,t}) \cup E(Q_{s,t}));$$

$$S' \leftarrow (\bigcup_{s \in S} W_s) \cup R;$$

Return Compute-Incident-Edges $(G', S', t, f - 1);$

To Show: Last edge of a short-**Algorithm 2:** Compute-Incident-Edges(G, S, t, f). est path in $G \setminus (F \cup e)$ lies in the if f = 0 then output. Return {LastE($P_{s,t}$), LastE($Q_{s,t}$) | $s \in S$ }; end $L \leftarrow \sqrt{8f |S| n \log n};$ $R \leftarrow$ uniformly random subset of $V \setminus \{t\}$ of size L: for $s \in S$ do $(P_{s,t}, Q_{s,t}) \leftarrow \text{Pair of } (s, t) \text{-shortest-paths};$ $W_{s} \leftarrow \{u \in V \mid 1 \leq \operatorname{dist}(u, t, P_{s,t} \cup Q_{s,t}) \leq v\}$ $8nf \log n/L$ end $G' \leftarrow (V, E \setminus \bigcup_{s \in S} E(P_{s,t}) \cup E(Q_{s,t}));$ $S' \leftarrow (\bigcup_{s \in S} W_s) \cup R;$ Return Compute-Incident-Edges(G', S', t, f - 1);

	- To Show Last adda of a short
Algorithm 3: Compute-Incident-Edges(G, S, t, f)	TO SHOW. Last edge of a short-
	— est path in $G \setminus (F \cup e)$ lies in the
if $f = 0$ then	output.
Return {LastE($P_{s,t}$), LastE($Q_{s,t}$) $s \in S$ };	Sketch: Last edge of $P_{s,t} \cup Q_{s,t}$
end	will be chosen. So assume $F \cap$
$L \leftarrow \sqrt{8f S n \log n};$	$(P_{s,t}\cup Q_{s,t}) eq \emptyset.$
$R \leftarrow$ uniformly random subset of $V \setminus \{t\}$ of size L ;	
for $s \in S$ do	

$$(P_{s,t}, Q_{s,t}) \leftarrow Pair ext{ of } (s, t)- ext{shortest-paths};$$

 $W_s \leftarrow \{u \in V \mid 1 \leq ext{dist}(u, t, P_{s,t} \cup Q_{s,t}) \leq 8nf \log n/L\}$

end

$$\begin{aligned} G' \leftarrow (V, E \setminus \bigcup_{s \in S} E(P_{s,t}) \cup E(Q_{s,t})); \\ S' \leftarrow (\bigcup_{s \in S} W_s) \cup R; \\ \text{Return Compute-Incident-Edges}(G', S', t, f - 1); \end{aligned}$$

	- To Show: Last edge of a short-
Algorithm 4: Compute-Incident-Edges (G, S, t, f) .	C = C + C + C
	- est path in $G \setminus (F \cup e)$ lies in the
if $f = 0$ then	output.
$Return \ \{LastE(P_{s,t}), LastE(Q_{s,t}) \mid s \in S \};$	Sketch: Last edge of $P_{s,t} \cup Q_{s,t}$
end	will be chosen. So assume $F \cap$
$L \leftarrow \sqrt{8f S n \log n};$	$(P_{s,t}\cup Q_{s,t}) eq \emptyset.$
$R \leftarrow$ uniformly random subset of $V \setminus \{t\}$ of size L;	Consider shortest paths $P_{s,t,F}$
for $s \in S$ do	an'd $Q_{s,t,F}$ in $G \setminus F$. WLOG
$ \begin{array}{ c c } (P_{s,t},Q_{s,t}) \leftarrow Pair of (s,t) \text{-shortest-paths;} \\ W_s \leftarrow \{u \in V \mid 1 \leqslant dist(u,t,P_{s,t} \cup Q_{s,t}) \leqslant \\ 8nf \log n/L \} \end{array} $	$e \notin P_{s,t,F}.$

end

$$\begin{aligned} G' \leftarrow (V, E \setminus \bigcup_{s \in S} E(P_{s,t}) \cup E(Q_{s,t})); \\ S' \leftarrow (\bigcup_{s \in S} W_s) \cup R; \\ \text{Return Compute-Incident-Edges}(G', S', t, f - 1); \end{aligned}$$

	To Show: Last edge of a short-
Algorithm 5: Compute-Incident-Edges (G, S, t, f) .	
	- est path in $G \setminus (F \cup e)$ lies in the
if $f = 0$ then	output.
$Return \ \{LastE(P_{s,t}), LastE(Q_{s,t}) \mid s \in S\};$	Sketch: Last edge of $P_{s,t} \cup Q_{s,t}$
end	will be chosen. So assume $F \cap$
$L \leftarrow \sqrt{8f S n \log n};$	$(P_{s,t} \cup Q_{s,t}) \neq \emptyset.$
$R \leftarrow$ uniformly random subset of $V \setminus \{t\}$ of size L:	Consider shortest paths $P_{s,t,F}$
for $s \in S$ do	an'd $Q_{s,t,F}$ in $G \setminus F$. WLOG
$(P_{s,t}, Q_{s,t}) \leftarrow Pair of (s, t) -shortest-paths;$	$e \notin P_{s,t,F}$.
$W_{s} \leftarrow \{u \in V \mid 1 \leqslant dist(u, t, P_{s,t} \cup Q_{s,t}) \leqslant t$	• Find last $\overline{x} \in S'$ on $P_{s,t,F}$,
$8nf \log n/L$	• $\overline{x} \rightsquigarrow t$ shortest path won't
end	internally intersect
$G' \leftarrow (V, E \setminus \bigcup_{c \in S} E(P_{s,t}) \cup E(Q_{s,t}));$	(P O)
$S' \leftarrow (\downarrow _{-c} W_c) \cup R$:	$\bigcup_{u\in S}(I_{u,t}\cup Q_{u,t}).$
Return Compute-Incident-Edges($G', S', t, f - 1$);	• $\overline{x} \rightsquigarrow t$ lies in the $(f-1,1)$ -preserver of G' .

Distance Labelling Schemes

For $f \ge 0$, and *n*-vertex unweighted undirected graph, there is an (f + 1)-fault-tolerant distance labeling scheme that assigns each vertex a label of $O(fn^{2-1/2^f} \log n)$ bits that can be computed in O(fmn) time each, and O(|S|m) each for f = 0.

Subset Replacement Path Problem

The input is a graph G = (V, E) and a set of source vertices S, and for every pair of vertices $s, t \in S$ and failing edge $e \in E$, report dist $(s, t, G \setminus e)$. Given a graph G = (V, E) and a set of source vertices S, we can solve the problem in $O(|S|m) + \tilde{O}(|S|^2n)$ in the word-RAM model.

(f, k)-preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$, $(s, t) \in P$ and $K \subseteq E$ such that $|K| \leq k$ and dist $(s, t, G \setminus F) = dist(s, t, G \setminus (F \cup K))$,

 $dist(s, t, G \setminus (F \cup K)) = dist(s, t, H \setminus (F \cup K))$, for all $(s, t) \in P$.

(f, k)-preserver

Input: Graph G = (V, E), pairs $P \subseteq V \times V$, integer f. **Output:** Subgraph H of G, such that for all $F \subseteq E$, $|F| \leq f$, $(s, t) \in P$ and $K \subseteq E$ such that $|K| \leq k$ and dist $(s, t, G \setminus F) = dist(s, t, G \setminus (F \cup K))$,

 $\mathsf{dist}(s,t, G \setminus (F \cup K)) = \mathsf{dist}(s,t, H \setminus (F \cup K)), \text{ for all } (s,t) \in P.$

- Is it possible to construct (f, k)-preserver more efficiently than (f + k)-preservers?
- For a (0, k)-preserver for pair of vertices s, t, is it possible to bound #{u ∈ V | dist(u, t, H) ≤ α} for any α > 0?
- Can restoration lemma for k-edge failures be used with (f, k)-preservers?

Thank you!