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Preliminaries

Fault Tolerant Distance Preserver

Input: Graph G = (V ,E ), pairs P ⊆ V × V , integer f .
Output: Subgraph H of G , such that for all F ⊆ E , |F | ≤ f

dist(s, t,G \ F ) = dist(s, t,H \ F ), for all (s, t) ∈ P.

Source-Wise Distance Preserver: P = S × V
Subset Distance Preserver: P = S × S
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Known Results

Bodwin et al. (2017)

For every directed or undirected unweighted graph G = (V ,E ), integer f ≥ 1, one can

construct in time O(fmn) an f -fault tolerant S × V preserver of size Õ(f |S |1/2f n2−1/2f ).
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Known Results

Restoration Lemma, Afek et al. (2002)

For graph G = (V ,E ), s, t ∈ V and failing edge e, s ⇝ t shortest path in G \ e can be
represented as concatenation of two shortest paths in the original G , s ⇝ x and x ⇝ t.

Concatenation of any shortest paths. Hard to trivially generate a small canonical path
family.

Bodwin and Parter (2021)

There’s a randomized algorithm to generate a canonical path family of size 2 for all pair
of nodes.
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Our Results

Canonical Path Family

There’s an O(mn) deterministic algorithm to generate a canonical path family of size 2
for all pair of nodes.
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New Structure

Fault Tolerant Distance Preserver

Input: Graph G = (V ,E ), pairs P ⊆ V × V , integer f .
Output: Subgraph H of G , such that for all F ⊆ E , |F | ≤ f and (s, t) ∈ P,

dist(s, t,G \ F ) = dist(s, t,H \ F ).

(f , 1)-preserver

Input: Graph G = (V ,E ), pairs P ⊆ V × V , integer f .
Output: Subgraph H of G , such that for all F ⊆ E , |F | ≤ f , (s, t) ∈ P and edge e such
that dist(s, t,G \ F ) = dist(s, t,G \ (F ∪ e)), then

dist(s, t,G \ (F ∪ e)) = dist(s, t,H \ (F ∪ e)).
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Our Results

(f , 1)-sourcewise preserver computation

For f ≥ 1, for an undirected, unweighted n-vertex graph G = (V ,E ) and source S ⊆ V ,

we can compute an (f , 1)-S × V -preserver for G in Õ(fn2−1/2f |S |1/2f ).
For f = 0, we can compute a (0, 1)-fault tolerant S × V preserver with O(|S |n) edges in
O(m + n) time.

This matches the best construction of f -FT S ×V preserver given by Bodwin et al (2017).
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Motivation

(0, 1) - {s} × {t} preserver is the canonical path family of size 2.

Two paths from s, t which intersect only on distance cut edges.

s t

Subset distance preservers

An (f , 1)-sourcewise distance preserver is an (f + 1)-subset distance preserver.

Just use the restoration lemma.
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(0, 1)-preserver Construction

(0, 1)-sourcewise preserver

Given a graph G and source set S , we can compute a (0, 1)-sourcewise preserver of size
O(|S |n) in O(|S |m) time.

Two rooted tree subgraphs are said to be independent only if they intersect at the cut
edges.

Georgiadis and Tarjan (2012)

Given a directed graph G = (V ,E ) and a designated source r , a pair of independent trees
T1, T2 rooted at r are computable in O(m + n) time.

• Construct shortest path DAG Ds = (V ,ED ⊆ E ), such that it only contains edges
dist(s, y ,G ) = dist(s, x ,G ) + 1.
• Compute T 1

s and T 2
s rooted at s using the above lemma.

• ⋃
s∈S(T

1
s ∪ T 2

s ) is a (0, 1)-preserver.
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(f , 1)-sourcewise preserver Construction

Canonical Path Family

For each (s, t) ∈ S × V , we can implicitly compute shortest paths Ps,t and Qs,t which
intersect only on (s, t)-distance cut edges in O(|S |n).

Follows directly from (0, 1)-sourcewise preserver construction.

Reuse Bodwin et al’s construction of f -FT sourcewise preserver but replace each shortest
path with the pair of above shortest paths.
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(f , 1)-sourcewise Preserver Construction

Algorithm 1: Compute-Incident-Edges(G , S , t, f ).

if f = 0 then
Return {LastE(Ps,t), LastE(Qs,t) | s ∈ S};

end

L←
√
8f |S | n log n;

R ← uniformly random subset of V \ {t} of size L;
for s ∈ S do

(Ps,t ,Qs,t)← Pair of (s, t)-shortest-paths;
Ws ← {u ∈ V | 1 ⩽ dist(u, t,Ps,t ∪ Qs,t) ⩽
8nf log n/L}

end
G ′ ←

(
V ,E \

⋃
s∈S E (Ps,t) ∪ E (Qs,t)

)
;

S ′ ← (
⋃

s∈S Ws) ∪ R;
Return Compute-Incident-Edges(G ′, S ′, t, f − 1);

To Show: Last edge of a short-
est path in G \ (F ∪ e) lies in the
output.
Sketch: Last edge of Ps,t ∪ Qs,t

will be chosen. So assume F ∩
(Ps,t ∪ Qs,t) ̸= ∅.
Consider shortest paths Ps,t,F

an‘d Qs,t,F in G \ F . WLOG
e /∈ Ps,t,F .

• Find last x ∈ S ′ on Ps,t,F ,

• x ⇝ t shortest path won’t
internally intersect⋃

u∈S(Pu,t ∪ Qu,t).

• x ⇝ t lies in the
(f − 1, 1)-preserver of G ′.
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(f , 1)-sourcewise Preserver Construction
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(f , 1)-sourcewise Preserver Construction
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(f , 1)-sourcewise Preserver Construction
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(f , 1)-sourcewise Preserver Construction
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Other Applications

Distance Labelling Schemes

For f ≥ 0, and n-vertex unweighted undirected graph, there is an (f + 1)-fault-tolerant

distance labeling scheme that assigns each vertex a label of O(fn2−1/2f log n) bits that
can be computed in O(fmn) time each, and O(|S |m) each for f = 0.

Subset Replacement Path Problem

The input is a graph G = (V ,E ) and a set of source vertices S , and for every pair of
vertices s, t ∈ S and failing edge e ∈ E , report dist(s, t,G \ e).
Given a graph G = (V ,E ) and a set of source vertices S , we can solve the problem in
O(|S |m) + Õ(|S |2n) in the word-RAM model.

13 / 15



Open Questions

(f , k)-preserver

Input: Graph G = (V ,E ), pairs P ⊆ V × V , integer f .
Output: Subgraph H of G , such that for all F ⊆ E , |F | ≤ f , (s, t) ∈ P and K ⊆ E such
that |K | ≤ k and dist(s, t,G \ F ) = dist(s, t,G \ (F ∪ K )),

dist(s, t,G \ (F ∪ K )) = dist(s, t,H \ (F ∪ K )), for all (s, t) ∈ P.

• Is it possible to construct (f , k)-preserver more efficiently than (f + k)-preservers?

• For a (0, k)-preserver for pair of vertices s, t, is it possible to bound
#{u ∈ V | dist(u, t,H) ≤ α} for any α > 0?

• Can restoration lemma for k-edge failures be used with (f , k)-preservers?

14 / 15



Open Questions

(f , k)-preserver

Input: Graph G = (V ,E ), pairs P ⊆ V × V , integer f .
Output: Subgraph H of G , such that for all F ⊆ E , |F | ≤ f , (s, t) ∈ P and K ⊆ E such
that |K | ≤ k and dist(s, t,G \ F ) = dist(s, t,G \ (F ∪ K )),

dist(s, t,G \ (F ∪ K )) = dist(s, t,H \ (F ∪ K )), for all (s, t) ∈ P.

• Is it possible to construct (f , k)-preserver more efficiently than (f + k)-preservers?

• For a (0, k)-preserver for pair of vertices s, t, is it possible to bound
#{u ∈ V | dist(u, t,H) ≤ α} for any α > 0?

• Can restoration lemma for k-edge failures be used with (f , k)-preservers?

14 / 15



Thank you!
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