A Dichotomy Theorem for Ordinal Ranks in MSO

Damian Niwiński, **Paweł Parys**, Michał Skrzypczak University of Warsaw

<u>Area</u>

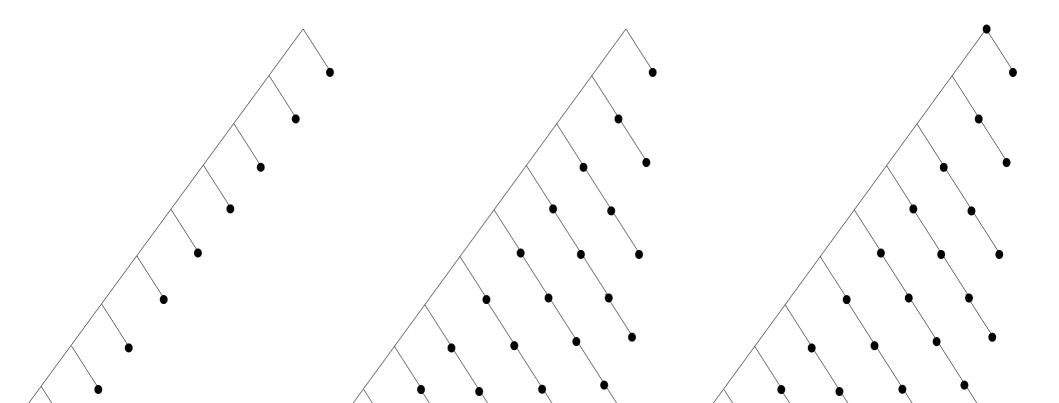
MSO (regular languages) over the full binary tree with labeled nodes.

<u>Area</u>

MSO (regular languages) over the full binary tree with labeled nodes.

Definition

A set *X* of nodes is *well-founded* if on every branch there are finitely many nodes from *X*.



<u>Area</u>

MSO (regular languages) over the full binary tree with labeled nodes.

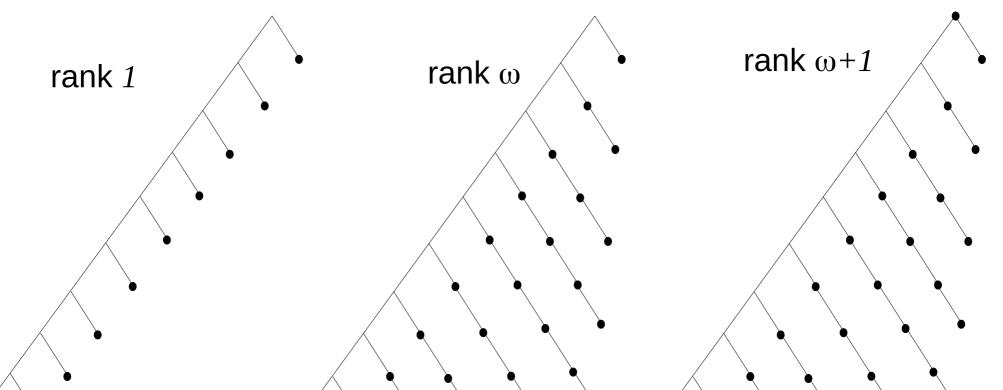
Definition

A set *X* of nodes is *well-founded* if on every branch there are finitely many nodes from *X*.

Equivalently if there is a function $c: X \rightarrow \eta$, for some ordinal η ,

such that c(u) > c(v) when *u* is an ancestor of *v*.

The minimal such η is the *rank of X*.



(identify a set *X* with its characteristic function $t_X \in Tr_{\{0,1\}}$)

The language $WF = \{t_X \in Tr_{\{0,1\}} : X \text{ is well-founded}\}$ is regular (co-Büchi).

(identify a set *X* with its characteristic function $t_X \in Tr_{\{0,1\}}$)

The language $WF = \{t_X \in Tr_{\{0,1\}} : X \text{ is well-founded}\}$ is regular (co-Büchi).

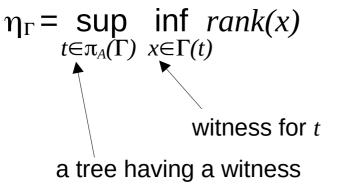
For a regular language $L \subseteq WF$ consider the ordinals: $\inf\{rank(t) : t \in L\}$ $\sup\{rank(t) : t \in L\}$

(identify a set *X* with its characteristic function $t_X \in Tr_{\{0,1\}}$)

The language $WF = \{t_X \in Tr_{\{0,1\}} : X \text{ is well-founded}\}$ is regular (co-Büchi).

For a regular language $L \subseteq WF$ consider the ordinals: $\inf\{rank(t) : t \in L\}$ $\sup\{rank(t) : t \in L\}$

More generally, for a regular relation $\Gamma \subseteq Tr_A \times WF$ consider



(identify a set *X* with its characteristic function $t_X \in Tr_{\{0,1\}}$)

The language $WF = \{t_X \in Tr_{\{0,1\}} : X \text{ is well-founded}\}$ is regular (co-Büchi).

For a regular language $L \subseteq WF$ consider the ordinals: $\inf\{rank(t) : t \in L\}$ $\sup\{rank(t) : t \in L\}$

More generally, for a regular relation $\Gamma \subseteq Tr_A \times WF$ consider

 $\eta_{\Gamma} = \sup_{t \in \pi_{A}(\Gamma)} \inf_{x \in \Gamma(t)} \operatorname{rank}(x)$

Theorem. The ordinal η_{Γ} is either

- smaller than ω^2 , or
- equal to ω_1 (i.e., the first uncountable ordinal).

Moreover, it can be effectively decided which of the cases holds. In the former case, we can compute a number *N* such that $\eta_{\Gamma} < N \cdot \omega$.

Application: mu-calculus

The least fixed point $\mu X.F(X)$ can be computed by iterating *F*. How many iterations are needed?

Application: mu-calculus

- The least fixed point $\mu X.F(X)$ can be computed by iterating *F*.
- How many iterations are needed?
- Given a model τ , the *closure ordinal* of $\mu X.F(X)$ in τ is the least ordinal η such that $\mu X.F(X) = \mu^{\eta} X.F(X)$.
- The *closure ordinal* of $\mu X.F(X)$ is the supremum of these ordinals over all models τ (or ∞ if the supremum does not exist).
- Example: $\mu X. \Diamond X \rightarrow \text{closure ordinal 0}$ $\mu X. (a \lor \Diamond X) \rightarrow \text{closure ordinal } \omega$ $\mu X. (\Box X) \rightarrow \text{closure ordinal } \infty$

Application: mu-calculus

- The least fixed point $\mu X.F(X)$ can be computed by iterating *F*.
- How many iterations are needed?
- Given a model τ , the *closure ordinal* of $\mu X.F(X)$ in τ is the least ordinal η such that $\mu X.F(X) = \mu^{\eta} X.F(X)$.
- The *closure ordinal* of $\mu X.F(X)$ is the supremum of these ordinals over all models τ (or ∞ if the supremum does not exist).
- Example: $\mu X. \Diamond X \rightarrow \text{closure ordinal 0}$ $\mu X. (a \lor \Diamond X) \rightarrow \text{closure ordinal } \omega$ $\mu X. (\Box X) \rightarrow \text{closure ordinal } \infty$
- **Theorem.** Let F(X) be a μ -calculus formula in which the variable X does not occur in scope of any fixed-point operator. Then, the closure ordinal of $\mu X.F(X)$ is either strictly smaller than ω^2 , or at least ω_1 . (proved also by Afshari, Barlucchi, Leigh; FICS 2024)

For a regular relation $\Gamma \subseteq Tr_A \times WF$ consider $\eta_{\Gamma} = \sup \inf rank(x)$

 $t \in \pi_A(\Gamma) \ x \in \Gamma(t)$

Theorem. The ordinal η_{Γ} is either

- smaller than ω^2 , or
- equal to ω_1 (i.e., the first uncountable ordinal).

Moreover, it can be effectively decided which of the cases holds. In the former case, we can compute a number N such that $\eta_{\Gamma} < N \cdot \omega$.

Proof idea: dichotomy game.

A tree $t \in Tr_A$ is η -challenging if any witness x in WF, such that $(t,x) \in \Gamma$, has $rank(x) \ge \eta$.

In a dichotomy game

- Eve wins if there is an η -challenging tree for any $\eta < \omega_1$, thus $\eta_{\Gamma} = \omega_1$;
- Adam wins if any *t* has a witness *x* of a uniformly bounded rank. A bound on the size of Adam's memory yields the desired inequality $rank(x) < N \cdot \omega$.

Easier game: Eve wins when for any $\eta < \omega_1$ there is a well-founded tree in *L* of rank η .

In each round:

Eve proposes a node label $\in \{0,1\}$

Adam chooses a direction

strategy of Eve \Rightarrow a tree *t*

Easier game: Eve wins when for any $\eta < \omega_1$ there is a well-founded tree in *L* of rank η .

In each round:

Eve proposes a node label $\in \{0,1\}$ Eve proposes a transition of *A* recognizing *L*

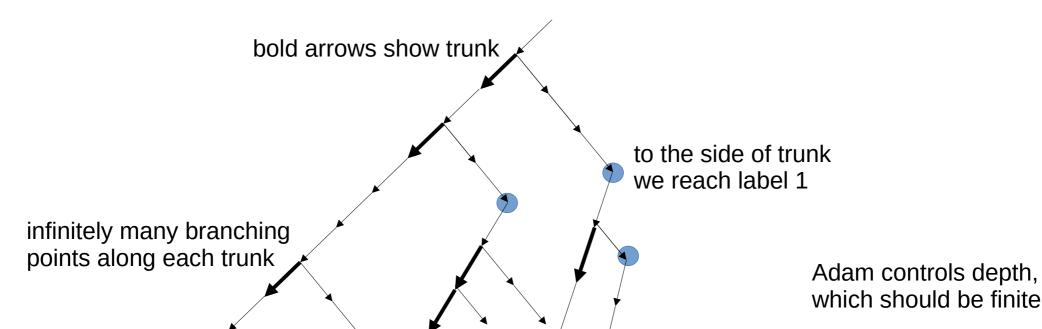
Adam chooses a direction

strategy of Eve \Rightarrow a tree *t*, a run of *A* over *t*

Easier game: Eve wins when for any $\eta < \omega_1$ there is a well-founded tree in *L* of rank η .

In each round: Adam may say "it's enough" Eve proposes a node label $\in \{0,1\}$ Eve proposes a transition of *A* recognizing *L* Eve shows "trunk" + "branching points" Adam chooses a direction

strategy of Eve \Rightarrow a tree *t*, a run of *A* over *t*, a nested comb structure



Goal: Eve wins if there is an η -challenging tree for any $\eta < \omega_1$, thus $\eta_{\Gamma} = \omega_1$.

Basic ingredient: Eve proposes a node label $\in A$, Adam chooses a direction

strategy of Eve \Rightarrow a tree

Goal: Eve wins if there is an η -challenging tree for any $\eta < \omega_1$, thus $\eta_{\Gamma} = \omega_1$.

Basic ingredient: Eve proposes a node label $\in A$, Adam chooses a direction

strategy of Eve \Rightarrow a tree

additionally: the tree should be η -challenging – all witnesses *x* such that $(t,x) \in \Gamma$, should satisfy $rank(x) \ge \eta$.

How Eve can show this?

• Adam provides a witness on the fly? Too convenient for Eve

Goal: Eve wins if there is an η -challenging tree for any $\eta < \omega_1$, thus $\eta_{\Gamma} = \omega_1$.

Position: two sets of states ("trunk" phase, "reach" phase)

In each round: • Adam may erase some states (i.e., say "it's enough")

- Eve proposes a node label $\in \{0,1\}$
- for each state and each transition

Eve shows "trunk" + "branching points"

Adam chooses a direction

strategy of Eve \Rightarrow a tree + a nested comb structure for each run/witness

Can Eve win?

- By definition, there is a nested comb structure for each witness
- In the game: Eve has to play positionally (knowing only the current state, but not knowing the previous and future part of the witness)
- But anyway Eve can win...

<u>Summary</u>

For a regular relation $\Gamma \subseteq Tr_A \times WF$ consider $\eta_{\Gamma} = \sup_{t \in \pi_A(\Gamma)} \inf_{x \in \Gamma(t)} rank(x)$

Theorem 1. The ordinal η_{Γ} is either

- smaller than ω^2 , or
- equal to ω_1 (i.e., the first uncountable ordinal).

Theorem 2. Let F(X) be a μ -calculus formula in which the variable X does not occur in scope of any fixed-point operator. Then, the closure ordinal of $\mu X.F(X)$ (i.e., the number of iterations needed to reach fixed point) is either strictly smaller than ω^2 , or at least ω_1 .

In both theorems it can be effectively decided which of the cases holds.