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Talk Overview

@ Linear Program (LP)

e Polynomial vs Strongly Polynomial Algorithms

® LPs with < 2 variables per Inequality

® Minimum Cost Generalized Flow

o A Strongly Polynomial Interior Point Method
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Linear Program (LP)

Primal: Dual:
min ¢’ x max b'y
s.t. Ax=5> s.t. ATy <c
x>0

e Introduced by [Kantorovich '39] [Hitchcock '41] [Koopmans '42]
[Dantzig '47].
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LP Algorithms

Input: A R™™ bpeR" ce€R™ Total bit length L.
Def: A polynomial algorithm runs in poly(m, n, L) time.

e Polynomial algorithms for LP:
» Ellipsoid method [Khachiyan '79]
» Interior point method [Karmarkar '84] [Renegar '88|
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e Simplex method [Dantzig '47]

» Not known to be polynomial, but efficient in practice.
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Strongly Polynomial

Input: A€ R™™ beR" ceR™ Total bit length L.

Def: An algorithm is strongly polynomial if it uses
@ poly(m, n) elementary arithmetic operations (+, —, X, +, <?), and
@® poly(m, n, L) space.

Smale’s 9th Problem

Is there a strongly polynomial algorithm for linear programming?

)
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Combinatorial LP:
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The Zoo of LP Subclasses

General LP = LP with < 3 variables per inequality

( Strongly polynomial (as of 2024)
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Combinatorial LP:

e Shortest path
e Bipartite matching

e Maximum flow

e Minimum cost flow
N\

J

e LP feasibility with < 2

variables per inequality
e Discounted MDP

e Maximum generalized
flow

P with < 2 variables

J

e Undiscounted MDP




2 Variables-per-Inequality LP

o Any 2-variables-per-inequality (2VPI) LP can be
reduced to the following monotone form:

max by
sst.veyj—vi<c  Ve=(i,)),

where the edges come from a directed multigraph G = (V, E), and
Ye > 0 is the gain factor of the edge e.



Minimum Cost Generalized Flow

e The dual LP of a monotone 2VPI system is:

T

min ¢’ x
Z YeXe — Z Xe=b, VvevVv
665"‘ ) ee&out(v)

x>0

Interpretation: for directed multigraph G = (V,E), |V| = n,|E| = m,
node demands b € RY, arc costs ¢ € RE and gain factors v € RE,

find a minimum cost generalized flow satisfying all node demands.



Minimum Cost Generalized Flow

e The dual LP of a monotone 2VPI system is:

min ¢! x
Z YeXe — Z Xe=b, VvevVv
665"‘ ) ee&out(v)

x>0

Interpretation: for directed multigraph G = (V,E), |V| = n,|E| = m,
node demands b € RY, arc costs ¢ € RE and gain factors v € RE,

find a minimum cost generalized flow satisfying all node demands.

\m X% \/\/' Models leaky pipes,
/u 20 10,\)\) currency exchange etc.
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Example: Production with Different Machines

e Variant of a problem proposed by in his paper
introducing Linear Programming.

e Machine i can produce ;; units of
o o part j in one day at cost cj.

e Daily demand d; for part j.

min E CijXjj

ieM,jepP
st Y <1 VieM
Jjepr
@) Y owxg=dp VjeP
ieM
x>0

M: machines P: parts
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Prior Work

e Algorithms for for two-variable-per-inequality feasibility:

» Polynomial [Aspvall, Shiloach '80]
» Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94]
[Hochbaum, Naor '94] [Karczmarz '22]

o Algorithms for generalized flow feasibility:
» Polynomial [Goldberg, Plotkin, Tardos '91]
» Strongly polynomial [Végh "13] [Olver, Végh '20]

e Algorithms for minimum cost generalized flow:

» Polynomial [Wayne '02]
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Main Result

Theorem [D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

e The algorithm is based on the interior point method
by D

e What we'll need for this talk:
@ Interior point method
@® Straight line complexity
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Central Path

e For each 1 > 0, there exists a unique
optimal solution x°P(u) to

min ¢’ x — MZ log(x;)
i=1
s.t. Ax = b,x € RZ,.

Def: The central path is the curve
{xP(u) : p >0}

e As 1 — 0, x°P(u) converges to an optimal
solution x* of the LP.

e Interior Point Method (IPM): Walk down the
central path with geometrically decreasing p.
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Alternate View of the Central Path

e Let us reparameterize x°P by the optimality gap:

c'xP(g)=c'x" +g Vg > 0.
cTx=cTx*+g

Intuition: Each coordinate of x°P(g) approximately as big as possible
subject to gap bound g.

Def: The max central path is the curve {x™°P(g) : g > 0}, given by

mec
X! p

TP(g) = max x

s.t. x feasible

optimality gap < g.

Thm: i X™MP < xP L x™MeP,
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Xi
mcp
X:
i
cp

X;

1  mcp
4m”i

g

e IPM generates a piecewise-affine curve x*!& near the central path

lxcp < Xalg < 2xCP = ixmcp < Xalg < WP
2 4m

Def: The straight line complexity of x;"?, SLCy(x;"P), is the minimum

number of pieces of a continuous piecewise-affine function h such that

X < h < X"P
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Straight Line Complexity

e 7 iterations required by any IPM is at least

max SLC 1 (x"").

i€[m] %i

Theorem D

There is an interior point method which solves LP in

(st () Escer)

iterations.
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Main Result

Theorem [D

For the minimum-cost generalized flow problem on G = (V/, E) with n
nodes and m arcs,

SLC1 (x."P) = O(mn) Ve c E.

e Key ingredient: Circuits

Theorem [D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem.
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Circuits

Def: Let W = ker(A). A circuit is any vector f € W \ {0} such that
Ah e W\ {0} with supp(h) < supp(f).

Example: Network flow movement subspace is

Ax =0 — Z Xe — Z xe=0 YveV

ecdin(v) ecsout(v)

e ker(A) = set of circulations. Circuits correspond to directed cycles.

\
I
_

ff=0

S X S
—
I
—
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Circuits of Generalized Flow

e Generalized flow movement subspace is

Ax =0 — Z YeXe — Z xe=0 YvevV
e€din(v) e€gsout(v)

e ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle Bicycle

HeEC Ye = 1 HeECl Ye >1 HeECz Ve <1

flow-generating flow-absorbing
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Upper Bounding the SLC

o f € ker(A) with ¢"f > 0 induces a line segment in the feasible region:

g
xf(g) = x* +—f as long as x* + ff>0
Xe
mcp
XE
f
maxresXe
/—/— MaXcircuit € Xe
/ X;n(;p
m
g
xmep

C
Fact: max xf > €

circuit C m

. C
Strategy: Find S C ker(A) such that maxses X! > L maxcireuie ¢ x{

— SLC (x™P) < 2|S].
3
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Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

e Let C is a bicycle containing e.

Xe

e Given f € ker(A), what does x/ > X:C mean?

» It is cheaper to send flow on e via f than f€, and more flow can be
sent on e via f than fC.
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Def: For s-t walk W = (ey, e,..., ex), the walk flow "V sending 1 unit
of flow into t is defined by
£ = R =1fYielk—1].

a Ve & €it1)?

Ve Te

e By suitably replicating edges of E, will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
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Walk and Path Flows

Def: For s-t walk W = (ey, e,..., ex), the walk flow "V sending 1 unit
of flow into t is defined by
V=1, vt =", iclk-1]

’yek €; €1

’

e By suitably replicating edges of E, will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
A walk flow is a path flow it passes through each vertex at most once.

fW
w —

£’
w —

in-flow 1 at t
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Dominating Paths by Walks

e Assumptions: edges have non-negative costs ¢ € RS,
edges have positive capacity v € RE, (allows us to assume x* = 0).

Def: For s-t walks W, W', we say that W’ dominates W if

. . /
Cost Domination :  max £V ¢c. < max V¢,

eeW’ eeW
w’ w
e
max —.

Flow Domination : max
eeW U, ecW U

w —— c=1
fW, v=10-1
W/ 3

in-flow 1 at t

Core Part of Proof

Find a small set W of n-recurrent s-t walks such that every s-t path is
dominated by some walk in W.
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Dominating Paths by Walks

Theorem [D

For every s,t € V, there exists a set W of O(m?) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

e For every walk W, assign a signature (e, er) where

w
L w o fe
ec = arg max cef, €f := arg max .
ecW eeW  Ue

We call e. the cost bottleneck, and ef the flow bottleneck of W.

c 1 1 1 1
u 10 7 4 8
v 4 3 2

e
O
O
O

~+O

€c er
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e For every signature (e, er),
@ Start with a max gain ec-er path with signature (e, ef).
® Append a max gain n-recurrent s-e. walk which preserves signature.

© Append a max gain ef-t path which preserves signature.

X
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e
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e Analogous construction for the case where e, comes after er.

o W| = 0(m?).
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Thank you!



