A strongly polynomial algorithm for linear programs with at most two non-zero entries per row or column

Daniel Dadush

STACS 2025

Joint work with

Zhuan Khye Koh

Bento Natura

Neil Olver

COLUMBIA

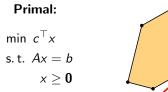
- Linear Program (LP)
 - Polynomial vs Strongly Polynomial Algorithms

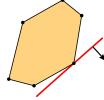
2 LPs with \leq 2 variables per Inequality

Minimum Cost Generalized Flow

A Strongly Polynomial Interior Point Method

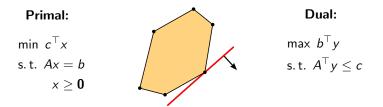
Linear Program (LP)





Dual: max $b^{\top}y$ s.t. $A^{\top}y \leq c$

Linear Program (LP)



• Introduced by [Kantorovich '39] [Hitchcock '41] [Koopmans '42] [Dantzig '47].

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

Def: A polynomial algorithm runs in poly(m, n, L) time.

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

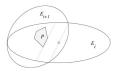
Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

Def: A polynomial algorithm runs in poly(m, n, L) time.

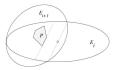
- Polynomial algorithms for LP:
 - Ellipsoid method [Khachiyan '79]

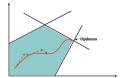


Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

Def: A polynomial algorithm runs in poly(m, n, L) time.

- Polynomial algorithms for LP:
 - Ellipsoid method [Khachiyan '79]
 - Interior point method [Karmarkar '84] [Renegar '88]

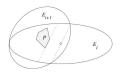


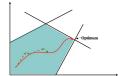


Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

Def: A polynomial algorithm runs in poly(m, n, L) time.

- Polynomial algorithms for LP:
 - Ellipsoid method [Khachiyan '79]
 - Interior point method [Karmarkar '84] [Renegar '88]



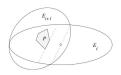


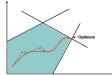
• Simplex method [Dantzig '47]

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length *L*.

Def: A polynomial algorithm runs in poly(m, n, L) time.

- Polynomial algorithms for LP:
 - Ellipsoid method [Khachiyan '79]
 - Interior point method [Karmarkar '84] [Renegar '88]





- Simplex method [Dantzig '47]
 - Not known to be polynomial, but efficient in practice.

Input: $A \in \mathbb{R}^{n \times m}, b \in \mathbb{R}^{n}, c \in \mathbb{R}^{m}$. Total bit length *L*.

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length L.

Def: An algorithm is strongly polynomial if it uses
poly(m, n) elementary arithmetic operations (+, -, ×, ÷, <?), and

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

• poly(m, n) elementary arithmetic operations $(+, -, \times, \div, <?)$, and • poly(m, n, L) space.

Input: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$, $c \in \mathbb{R}^{m}$. Total bit length L.

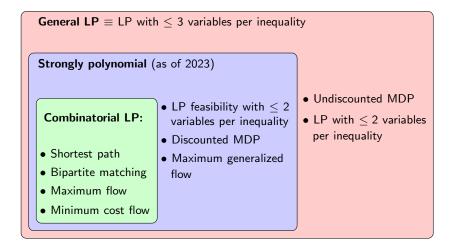
Def: An algorithm is strongly polynomial if it uses

poly(m, n) elementary arithmetic operations (+, -, ×, ÷, <?), and
poly(m, n, L) space.

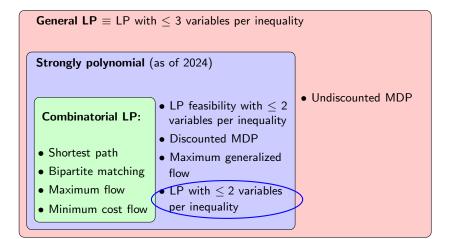
Smale's 9th Problem [Megiddo '83]

Is there a strongly polynomial algorithm for linear programming?

The Zoo of LP Subclasses



The Zoo of LP Subclasses



• [Hochbaum '04] Any 2-variables-per-inequality (2VPI) LP can be reduced to the following monotone form:

$$\max b^{\top} y \\ \text{s.t. } \gamma_e y_i - y_i \leq c_e \qquad \forall e = (i, j),$$

where the edges come from a directed multigraph G = (V, E), and $\gamma_e > 0$ is the *gain factor* of the edge *e*.

Minimum Cost Generalized Flow

• The dual LP of a monotone 2VPI system is:

$$\min c^{\top} x$$
s.t. $\sum_{e \in \delta^{in}(v)} \gamma_e x_e - \sum_{e \in \delta^{out}(v)} x_e = b_v \quad \forall v \in V$
 $x \ge \mathbf{0}$

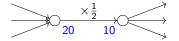
Interpretation: for directed multigraph G = (V, E), |V| = n, |E| = m, node demands $b \in \mathbb{R}^V$, arc costs $c \in \mathbb{R}^E$ and gain factors $\gamma \in \mathbb{R}_{>0}^E$, find a minimum cost generalized flow satisfying all node demands.

Minimum Cost Generalized Flow

• The dual LP of a monotone 2VPI system is:

$$\min c^{\top} x \\ \text{s.t.} \sum_{e \in \delta^{\text{in}}(v)} \gamma_e x_e - \sum_{e \in \delta^{\text{out}}(v)} x_e = b_v \quad \forall v \in V \\ x \ge \mathbf{0}$$

Interpretation: for directed multigraph G = (V, E), |V| = n, |E| = m, node demands $b \in \mathbb{R}^V$, arc costs $c \in \mathbb{R}^E$ and gain factors $\gamma \in \mathbb{R}_{>0}^E$, find a minimum cost generalized flow satisfying all node demands.



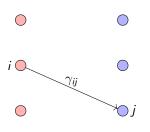
Models leaky pipes, currency exchange etc.

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper introducing Linear Programming.

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper introducing Linear Programming.

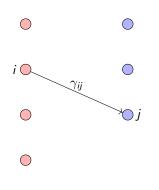


- Machine *i* can produce γ_{ij} units of part *j* in one day at cost c_{ij} .
- Daily demand d_j for part j.

M: machines P: parts

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper introducing Linear Programming.



M: machines *P*: parts

• Machine *i* can produce γ_{ij} units of part *j* in one day at cost c_{ij} .

• Daily demand d_j for part j.

$$\min \sum_{i \in M, j \in P} c_{ij} x_{ij}$$

s.t.
$$\sum_{j \in P} x_{ij} \le 1 \qquad \forall i \in M$$
$$\sum_{i \in M} \gamma_{ij} x_{ij} \ge d_j \quad \forall j \in P$$
$$x \ge \mathbf{0}$$

- Algorithms for for two-variable-per-inequality feasibility:
 - Polynomial [Aspvall, Shiloach '80]
 - Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94] [Hochbaum, Naor '94] [Karczmarz '22]

- Algorithms for for two-variable-per-inequality feasibility:
 - Polynomial [Aspvall, Shiloach '80]
 - Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94] [Hochbaum, Naor '94] [Karczmarz '22]
- Algorithms for generalized flow feasibility:
 - Polynomial [Goldberg, Plotkin, Tardos '91]
 - Strongly polynomial [Végh '13] [Olver, Végh '20]

- Algorithms for for two-variable-per-inequality feasibility:
 - Polynomial [Aspvall, Shiloach '80]
 - Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94] [Hochbaum, Naor '94] [Karczmarz '22]
- Algorithms for generalized flow feasibility:
 - Polynomial [Goldberg, Plotkin, Tardos '91]
 - Strongly polynomial [Végh '13] [Olver, Végh '20]
- Algorithms for minimum cost generalized flow:
 - Polynomial [Wayne '02]

Main Result

Theorem [D, Koh, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem, and consequently, for LPs with at most 2 variables per inequality or 2 variables per column.

Main Result

Theorem [D, Koh, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem, and consequently, for LPs with at most 2 variables per inequality or 2 variables per column.

• The algorithm is based on the interior point method by [Allamigeon, D, Loho, Natura, Végh '22].

Theorem [D, Koh, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem, and consequently, for LPs with at most 2 variables per inequality or 2 variables per column.

• The algorithm is based on the interior point method by [Allamigeon, D, Loho, Natura, Végh '22].

- What we'll need for this talk:
 - Interior point method
 - O Straight line complexity

• For each $\mu > 0$, there exists a unique optimal solution $x^{cp}(\mu)$ to

min
$$c^{\top}x - \mu \sum_{i=1}^{n} \log(x_i)$$

s.t. $Ax = b, x \in \mathbb{R}_{\geq 0}^{m}$.

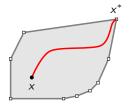
• For each $\mu > 0$, there exists a unique optimal solution $x^{cp}(\mu)$ to

min
$$c^{\top}x - \mu \sum_{i=1}^{n} \log(x_i)$$

s.t. $Ax = b, x \in \mathbb{R}_{>0}^{m}$.

Def: The central path is the curve

$$\{x^{\rm cp}(\mu): \mu > 0\}.$$



• For each $\mu > 0$, there exists a unique optimal solution $x^{cp}(\mu)$ to

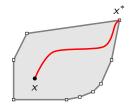
min
$$c^{\top}x - \mu \sum_{i=1}^{n} \log(x_i)$$

s.t. $Ax = b, x \in \mathbb{R}_{\geq 0}^{m}$.

Def: The central path is the curve

$$\{x^{\rm cp}(\mu): \mu > 0\}.$$

• As $\mu \rightarrow 0$, $x^{cp}(\mu)$ converges to an optimal solution x^* of the LP.



• For each $\mu > 0$, there exists a unique optimal solution $x^{cp}(\mu)$ to

min
$$c^{\top}x - \mu \sum_{i=1}^{n} \log(x_i)$$

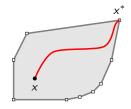
s.t. $Ax = b, x \in \mathbb{R}_{\geq 0}^{m}$.

Def: The central path is the curve

$$\{x^{\rm cp}(\mu): \mu > 0\}.$$

• As $\mu \to 0$, $x^{cp}(\mu)$ converges to an optimal solution x^* of the LP.

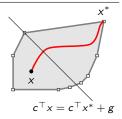
• Interior Point Method (IPM): Walk down the central path with geometrically decreasing μ .



Alternate View of the Central Path

• Let us reparameterize x^{cp} by the optimality gap:

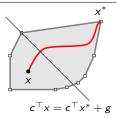
$$c^{ op} x^{\mathrm{cp}}(g) = c^{ op} x^* + g \qquad orall g \geq 0.$$



Alternate View of the Central Path

• Let us reparameterize x^{cp} by the optimality gap:

$$c^ op x^{
m cp}(g) = c^ op x^* + g \qquad orall g \geq 0.$$

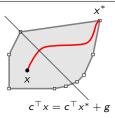


Intuition: Each coordinate of $x^{cp}(g)$ approximately as big as possible subject to gap bound g.

Alternate View of the Central Path

• Let us reparameterize x^{cp} by the optimality gap:

$$c^{ op} x^{\operatorname{cp}}(g) = c^{ op} x^* + g \qquad orall g \geq 0.$$



Intuition: Each coordinate of $x^{cp}(g)$ approximately as big as possible subject to gap bound g.

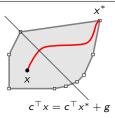
Def: The max central path is the curve $\{x^{mcp}(g) : g \ge 0\}$, given by

$$egin{aligned} &x^{ ext{mcp}}_i(g) := \max \; x_i \ & ext{s.t. } x ext{ feasible} \ & ext{ optimality gap} \leq g. \end{aligned}$$

Alternate View of the Central Path

• Let us reparameterize x^{cp} by the optimality gap:

$$c^{ op} x^{\operatorname{cp}}(g) = c^{ op} x^* + g \qquad orall g \geq 0.$$

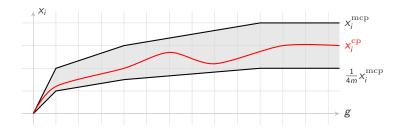


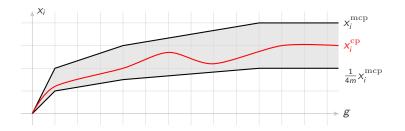
Intuition: Each coordinate of $x^{cp}(g)$ approximately as big as possible subject to gap bound g.

Def: The max central path is the curve $\{x^{mcp}(g) : g \ge 0\}$, given by

$$egin{aligned} &x_i^{ ext{mcp}}(g) := \max x_i \ & ext{s.t. } x ext{ feasible} \ & ext{ optimality gap} \leq g. \end{aligned}$$

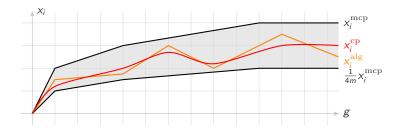
Thm:
$$\frac{1}{2m} x^{\operatorname{mcp}} \le x^{\operatorname{cp}} \le x^{\operatorname{mcp}}$$
.





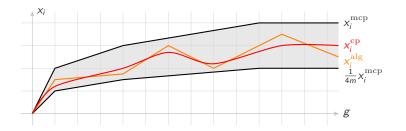
• IPM generates a piecewise-affine curve x^{alg} near the central path

$$\frac{1}{2}x^{\rm cp} \le x^{\rm alg} \le 2x^{\rm cp} \Rightarrow \frac{1}{4m}x^{\rm mcp} \le x^{\rm alg} \le x^{\rm mcp}$$



• IPM generates a piecewise-affine curve x^{alg} near the central path

$$\frac{1}{2}x^{\rm cp} \le x^{\rm alg} \le 2x^{\rm cp} \Rightarrow \frac{1}{4m}x^{\rm mcp} \le x^{\rm alg} \le x^{\rm mcp}$$

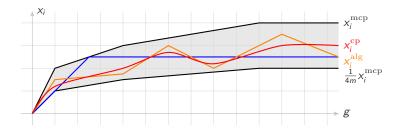


• IPM generates a piecewise-affine curve x^{alg} near the central path

$$\frac{1}{2}x^{\rm cp} \le x^{\rm alg} \le 2x^{\rm cp} \Rightarrow \frac{1}{4m}x^{\rm mcp} \le x^{\rm alg} \le x^{\rm mcp}$$

Def: The straight line complexity of x_i^{mcp} , $SLC_{\theta}(x_i^{mcp})$, is the minimum number of pieces of a continuous piecewise-affine function h such that

$$\theta x_i^{\mathrm{mcp}} \leq \mathbf{h} \leq x_i^{\mathrm{mcp}}.$$



• IPM generates a piecewise-affine curve x^{alg} near the central path

$$\frac{1}{2}x^{\rm cp} \le x^{\rm alg} \le 2x^{\rm cp} \Rightarrow \frac{1}{4m}x^{\rm mcp} \le x^{\rm alg} \le x^{\rm mcp}$$

Def: The straight line complexity of x_i^{mcp} , $SLC_{\theta}(x_i^{mcp})$, is the minimum number of pieces of a continuous piecewise-affine function h such that

$$\theta x_i^{\mathrm{mcp}} \leq \mathbf{h} \leq x_i^{\mathrm{mcp}}.$$

 $\bullet~\#$ iterations required by any IPM is at least

 $\max_{i\in[m]}\mathsf{SLC}_{\frac{1}{4m}}(x_i^{\mathrm{mcp}}).$

$\bullet~\#$ iterations required by any IPM is at least

$$\max_{i \in [m]} \mathsf{SLC}_{\frac{1}{4m}}(x_i^{\mathrm{mcp}}).$$

Theorem [Allamigeon, D, Loho, Natura, Végh '22]

There is an interior point method which solves LP in

$$O\left(\min_{\theta \in (0,1]} \sqrt{m} \log\left(\frac{m}{\theta}\right) \sum_{i=1}^{m} \mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}})\right)$$

iterations.

Main Result

Theorem [D, Koh, Natura, Olver, Végh '23]

For the minimum-cost generalized flow problem on G = (V, E) with n nodes and m arcs,

$$\operatorname{SLC}_{\frac{1}{m}}(x_e^{\operatorname{mcp}}) = O(mn) \qquad \forall e \in E.$$

Main Result

Theorem [D, Koh, Natura, Olver, Végh '23]

For the minimum-cost generalized flow problem on G = (V, E) with *n* nodes and *m* arcs,

$$\operatorname{SLC}_{\frac{1}{m}}(x_e^{\operatorname{mcp}}) = O(mn) \quad \forall e \in E.$$

Theorem [D, Koh, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem.

Main Result

Theorem [D, Koh, Natura, Olver, Végh '23]

For the minimum-cost generalized flow problem on G = (V, E) with *n* nodes and *m* arcs,

$$\operatorname{SLC}_{\frac{1}{m}}(x_e^{\operatorname{mcp}}) = O(mn) \quad \forall e \in E.$$

• Key ingredient: Circuits

Theorem [D, Koh, Natura, Olver, Végh '24]

There is a strongly polynomial algorithm for the minimum cost generalized flow problem.

Def: Let W = ker(A). A circuit is any vector $f \in W \setminus \{0\}$ such that $\nexists h \in W \setminus \{0\}$ with $\text{supp}(h) \subsetneq \text{supp}(f)$.

Def: Let W = ker(A). A circuit is any vector $f \in W \setminus \{0\}$ such that $\nexists h \in W \setminus \{0\}$ with $\text{supp}(h) \subsetneq \text{supp}(f)$.

Example: Network flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{\mathrm{in}}(v)} x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = 0 \quad \forall v \in V$$

Def: Let W = ker(A). A circuit is any vector $f \in W \setminus \{0\}$ such that $\nexists h \in W \setminus \{0\}$ with $\text{supp}(h) \subsetneq \text{supp}(f)$.

Example: Network flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{\mathrm{in}}(v)} x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = 0 \quad \forall v \in V$$

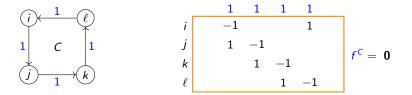
• ker(A) = set of circulations.

Def: Let W = ker(A). A circuit is any vector $f \in W \setminus \{0\}$ such that $\nexists h \in W \setminus \{0\}$ with $\text{supp}(h) \subsetneq \text{supp}(f)$.

Example: Network flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{\mathrm{in}}(v)} x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = 0 \quad \forall v \in V$$

• ker(A) = set of circulations. Circuits correspond to directed cycles.



• Generalized flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{in}(v)} \gamma_e x_e - \sum_{e \in \delta^{out}(v)} x_e = 0 \quad \forall v \in V$$

• Generalized flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{in}(v)} \gamma_e x_e - \sum_{e \in \delta^{out}(v)} x_e = 0 \quad \forall v \in V$$

• ker(A) = set of generalized circulations.

• Generalized flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{\mathrm{in}}(v)} \gamma_e x_e - \sum_{e \in \delta^{\mathrm{out}}(v)} x_e = 0 \quad \forall v \in V$$

• ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle

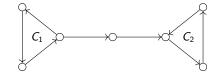
 $\prod_{e \in C} \gamma_e = 1$

• Generalized flow movement subspace is

$$Ax = 0 \qquad \Longleftrightarrow \qquad \sum_{e \in \delta^{in}(v)} \gamma_e x_e - \sum_{e \in \delta^{out}(v)} x_e = 0 \quad \forall v \in V$$

• ker(A) = set of generalized circulations. 2 types of circuits:

Bicycle

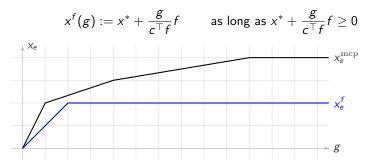


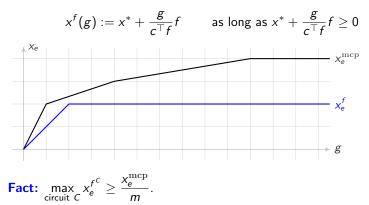
 $\prod_{e \in C} \gamma_e = 1$

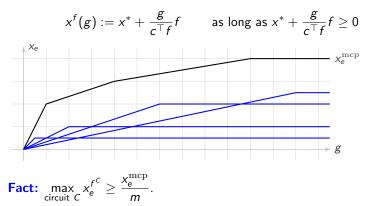
flow-generating

flow-absorbing

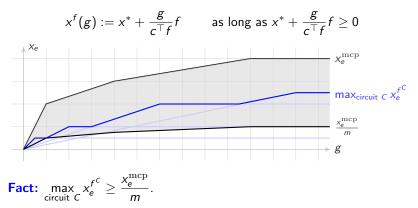
$$x^{f}(g) := x^{*} + rac{g}{c^{ op} f} f$$
 as long as $x^{*} + rac{g}{c^{ op} f} f \geq 0$



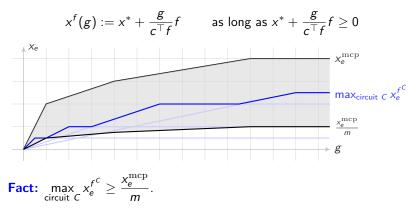






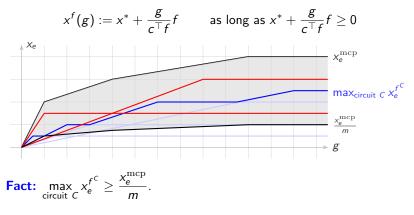


• $f \in \text{ker}(A)$ with $c^{\top} f > 0$ induces a line segment in the feasible region:



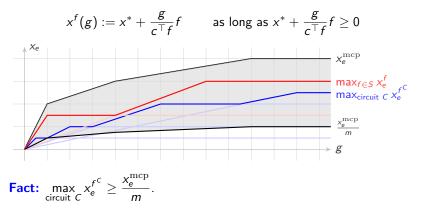
Strategy: Find $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$. $\implies \text{SLC}_{\frac{1}{m^3}}(x_e^{\text{mcp}}) \le 2|S|.$

• $f \in \text{ker}(A)$ with $c^{\top} f > 0$ induces a line segment in the feasible region:



Strategy: Find $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$. $\implies \text{SLC}_{\frac{1}{m^3}}(x_e^{\text{mcp}}) \le 2|S|.$

• $f \in \text{ker}(A)$ with $c^{\top} f > 0$ induces a line segment in the feasible region:



Strategy: Find $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$. $\implies \text{SLC}_{\frac{1}{m^3}}(x_e^{\text{mcp}}) \le 2|S|.$

Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

Recall: Circuits of generalized flow are conservative cycles and bicycles.

Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

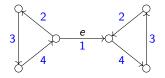
Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

Recall: Circuits of generalized flow are conservative cycles and bicycles.

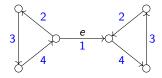
• Let C is a bicycle containing e.



Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.



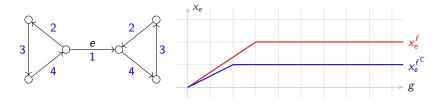
• Given $f \in \text{ker}(A)$, what does $x_e^f \ge x_e^{f^c}$ mean?

Dominating Circuits

Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.



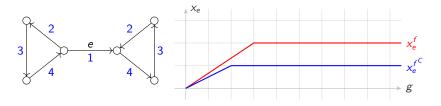
• Given $f \in \text{ker}(A)$, what does $x_e^f \ge x_e^{f^c}$ mean?

Dominating Circuits

Goal: Find small $S \subseteq \ker(A)$ such that $\max_{f \in S} x_e^f \ge \frac{1}{m^2} \max_{\text{circuit } C} x_e^{f^C}$.

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.



• Given $f \in \text{ker}(A)$, what does $x_e^f \ge x_e^{f^c}$ mean?

It is cheaper to send flow on e via f than f^C, and more flow can be sent on e via f than f^C.

Walk and Path Flows

Def: For *s*-*t* walk $W = (e_1, e_2, \ldots, e_k)$, the walk flow f^W sending 1 unit of flow into *t* is defined by

$$\gamma_{e_k} f_{e_k}^W = 1, \quad \gamma_{e_i} f_{e_i}^W = f_{e_{i+1}}^W, i \in [k-1].$$

Walk and Path Flows

Def: For *s*-*t* walk $W = (e_1, e_2, \ldots, e_k)$, the walk flow f^W sending 1 unit of flow into *t* is defined by

$$\gamma_{e_k} f_{e_k}^W = 1, \quad \gamma_{e_i} f_{e_i}^W = f_{e_{i+1}}^W, i \in [k-1].$$

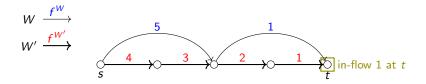
• By suitably replicating edges of *E*, will assume that edges of *W* are distinct. *W* is *k*-recurrent if it replicates original edges at most *k* times. A walk flow is a path flow it passes through each vertex at most once.

Walk and Path Flows

Def: For *s*-*t* walk $W = (e_1, e_2, \ldots, e_k)$, the walk flow f^W sending 1 unit of flow into *t* is defined by

$$\gamma_{e_k} f_{e_k}^W = 1, \quad \gamma_{e_i} f_{e_i}^W = f_{e_{i+1}}^W, i \in [k-1].$$

• By suitably replicating edges of *E*, will assume that edges of *W* are distinct. *W* is *k*-recurrent if it replicates original edges at most *k* times. A walk flow is a path flow it passes through each vertex at most once.



• Assumptions: edges have non-negative costs $c \in \mathbb{R}^{E}_{\geq 0}$, edges have positive capacity $u \in \mathbb{R}^{E}_{\geq 0}$ (allows us to assume $x^{*} = 0$).

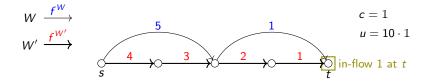
Def: For s-t walks W, W', we say that W' dominates W if

 $\begin{array}{ll} \text{Cost Domination}: & \max_{e \in W'} f_e^{W'} c_e \leq \max_{e \in W} f_e^{W} c_e, \\ \text{Flow Domination}: & \max_{e \in W} \frac{f_e^{W'}}{u_e} \leq \max_{e \in W} \frac{f_e^{W}}{u_e}. \end{array}$

• Assumptions: edges have non-negative costs $c \in \mathbb{R}^{E}_{\geq 0}$, edges have positive capacity $u \in \mathbb{R}^{E}_{\geq 0}$ (allows us to assume $x^{*} = 0$).

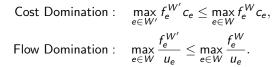
Def: For s-t walks W, W', we say that W' dominates W if

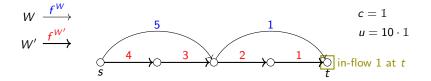
 $\begin{array}{ll} \text{Cost Domination}: & \max_{e \in W'} f_e^{W'} c_e \leq \max_{e \in W} f_e^{W} c_e, \\ \text{Flow Domination}: & \max_{e \in W} \frac{f_e^{W'}}{u_e} \leq \max_{e \in W} \frac{f_e^{W}}{u_e}. \end{array}$



• Assumptions: edges have non-negative costs $c \in \mathbb{R}^{E}_{\geq 0}$, edges have positive capacity $u \in \mathbb{R}^{E}_{\geq 0}$ (allows us to assume $x^{*} = 0$).

Def: For s-t walks W, W', we say that W' dominates W if





Core Part of Proof

Find a small set \mathcal{W} of *n*-recurrent *s*-*t* walks such that every *s*-*t* path is dominated by some walk in \mathcal{W} .

Theorem [D, Koh, Natura, Olver, Végh '23]

For every $s, t \in V$, there exists a set \mathcal{W} of $O(m^2)$ *n*-recurrent *s*-*t* walks such that every *s*-*t* path is dominated by some walk in \mathcal{W} .

Theorem [D, Koh, Natura, Olver, Végh '23]

For every $s, t \in V$, there exists a set \mathcal{W} of $O(m^2)$ *n*-recurrent *s*-*t* walks such that every *s*-*t* path is dominated by some walk in \mathcal{W} .

• For every walk W, assign a signature (e_c, e_f) where

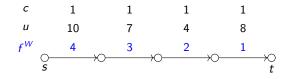
$$e_c := \arg \max_{e \in W} c_e f_e^W \qquad e_f := \arg \max_{e \in W} \frac{f_e^W}{u_e}.$$

Theorem [D, Koh, Natura, Olver, Végh '23]

For every $s, t \in V$, there exists a set \mathcal{W} of $O(m^2)$ *n*-recurrent *s*-*t* walks such that every *s*-*t* path is dominated by some walk in \mathcal{W} .

• For every walk W, assign a signature (e_c, e_f) where

$$e_c := \arg\max_{e \in W} c_e f_e^W \qquad e_f := \arg\max_{e \in W} \frac{f_e^W}{u_e}.$$

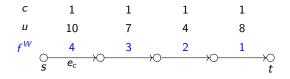


Theorem [D, Koh, Natura, Olver, Végh '23]

For every $s, t \in V$, there exists a set \mathcal{W} of $O(m^2)$ *n*-recurrent *s*-*t* walks such that every *s*-*t* path is dominated by some walk in \mathcal{W} .

• For every walk W, assign a signature (e_c, e_f) where

$$e_c := \arg\max_{e \in W} c_e f_e^W \qquad e_f := \arg\max_{e \in W} \frac{f_e^W}{u_e}.$$

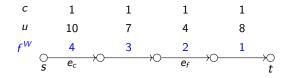


Theorem [D, Koh, Natura, Olver, Végh '23]

For every $s, t \in V$, there exists a set \mathcal{W} of $O(m^2)$ *n*-recurrent *s*-*t* walks such that every *s*-*t* path is dominated by some walk in \mathcal{W} .

• For every walk W, assign a signature (e_c, e_f) where

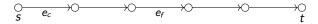
$$e_c := \arg\max_{e \in W} c_e f_e^W \qquad e_f := \arg\max_{e \in W} \frac{f_e^W}{u_e}.$$



• Let P be an s-t path with signature (e_c, e_f) .

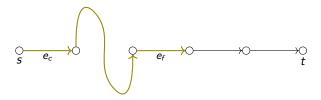


• Let P be an s-t path with signature (e_c, e_f) .



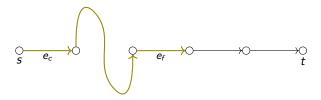
Def: Let patch(P) be the walk obtained from P by replacing the e_c-e_f subpath with a max gain e_c-e_f path of signature (e_c, e_f) .

• Let P be an s-t path with signature (e_c, e_f) .



Def: Let patch(P) be the walk obtained from P by replacing the e_c-e_f subpath with a max gain e_c-e_f path of signature (e_c, e_f) .

• Let P be an s-t path with signature (e_c, e_f) .

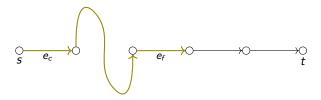


Def: Let patch(P) be the walk obtained from P by replacing the e_c-e_f subpath with a max gain e_c-e_f path of signature (e_c, e_f) .

Patching Lemma:

1 patch(P) dominates P.

• Let P be an s-t path with signature (e_c, e_f) .

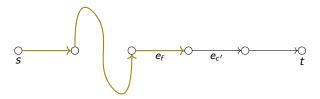


Def: Let patch(P) be the walk obtained from P by replacing the e_c-e_f subpath with a max gain e_c-e_f path of signature (e_c, e_f) .

Patching Lemma:

- **1** patch(P) dominates P.
- 2 The signature of patch(P) is either (e_c, e_f) or (e'_c, e_f), where e'_c comes after e_f.

• Let P be an s-t path with signature (e_c, e_f) .



Def: Let patch(P) be the walk obtained from P by replacing the e_c-e_f subpath with a max gain e_c-e_f path of signature (e_c, e_f) .

Patching Lemma:

- **1** patch(P) dominates P.
- 2 The signature of patch(P) is either (e_c, e_f) or (e'_c, e_f), where e'_c comes after e_f.

• For an *s*-*t* path *P*, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

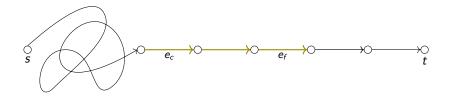
$$W_1 = patch(P)$$
 $W_i = patch(W_{i-1})$ $\forall i \ge 2$

• For an *s*-*t* path *P*, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

$$W_1 = patch(P)$$
 $W_i = patch(W_{i-1})$ $\forall i \ge 2$

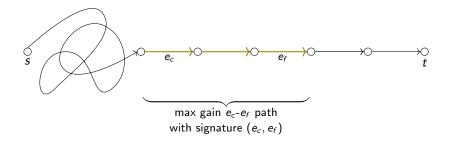
• For an *s*-*t* path *P*, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

$$W_1 = patch(P)$$
 $W_i = patch(W_{i-1})$ $\forall i \ge 2$



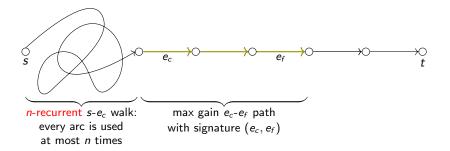
• For an *s*-*t* path *P*, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

$$W_1 = patch(P)$$
 $W_i = patch(W_{i-1})$ $\forall i \ge 2$



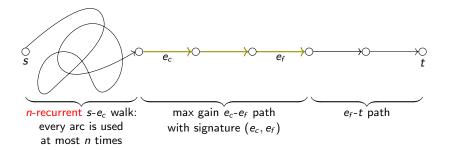
• For an *s*-*t* path *P*, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

$$W_1 = patch(P)$$
 $W_i = patch(W_{i-1})$ $\forall i \ge 2$



• For an *s*-*t* path *P*, let W_1, W_2, \ldots, W_k be the sequence of walks obtained by repeatedly patching until the signature stops changing, i.e.

$$W_1 = patch(P)$$
 $W_i = patch(W_{i-1})$ $\forall i \ge 2$



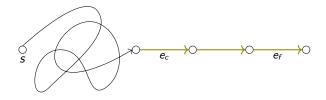
• For every signature (e_c, e_f) ,

The Dominating Set of Walks ${\cal W}$

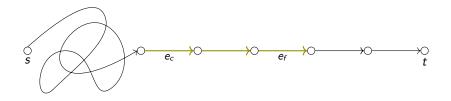
• For every signature (e_c, e_f) ,

1 Start with a max gain $e_c - e_f$ path with signature (e_c, e_f) .

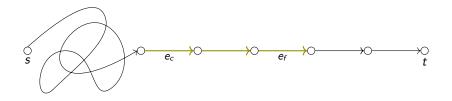
- For every signature (e_c, e_f) ,
 - 1 Start with a max gain $e_c e_f$ path with signature (e_c, e_f) .
 - **2** Append a max gain *n*-recurrent $s-e_c$ walk which preserves signature.



- For every signature (*e_c*, *e_f*),
 - **1** Start with a max gain $e_c e_f$ path with signature (e_c, e_f) .
 - 2 Append a max gain *n*-recurrent $s-e_c$ walk which preserves signature.
 - **3** Append a max gain e_f -t path which preserves signature.

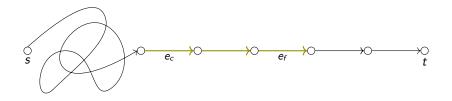


- For every signature (*e_c*, *e_f*),
 - **1** Start with a max gain $e_c e_f$ path with signature (e_c, e_f) .
 - 2 Append a max gain *n*-recurrent $s-e_c$ walk which preserves signature.
 - **3** Append a max gain e_f -t path which preserves signature.



• Analogous construction for the case where e_c comes after e_f .

- For every signature (e_c, e_f) ,
 - **1** Start with a max gain $e_c e_f$ path with signature (e_c, e_f) .
 - 2 Append a max gain *n*-recurrent $s-e_c$ walk which preserves signature.
 - **3** Append a max gain e_f -t path which preserves signature.



• Analogous construction for the case where e_c comes after e_f .

•
$$|\mathcal{W}| = O(m^2).$$

• SLC of minimum cost generalized flow is poly(m, n).

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with \leq 2 variables per inequality.

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with \leq 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

 $\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$

- SLC of minimum cost generalized flow is poly(m, n).
- \bullet Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

$$\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$$

- Future directions:
 - Develop a theory of SLC for LPs.

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with \leq 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

$$\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$$

- Future directions:
 - Develop a theory of SLC for LPs.
 - Undiscounted MDP: strongly polynomial solvability/straight line complexity open.

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with \leq 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

$$\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$$

- Future directions:
 - Develop a theory of SLC for LPs.
 - Undiscounted MDP: strongly polynomial solvability/straight line complexity open.
 - Faster strongly polynomial algorithm for minimum cost generalized flow.

- SLC of minimum cost generalized flow is poly(m, n).
- Strongly polynomial algorithm for LPs with \leq 2 variables per inequality.
- [Allamigeon, Benchimol, Gaubert, Joswig '18] There exist LPs with

$$\mathsf{SLC}_{\theta}(x_i^{\mathrm{mcp}}) = 2^{\Omega(m)}.$$

- Future directions:
 - Develop a theory of SLC for LPs.
 - Undiscounted MDP: strongly polynomial solvability/straight line complexity open.
 - Faster strongly polynomial algorithm for minimum cost generalized flow.

Thank you!