A strongly polynomial algorithm for linear
programs with at most two non-zero entries per
row or column

Daniel Dadush

STACS 2025

Utrecht
University

Joint work with
Zhuan Khye Koh Bento Natura Neil Olver LaszIé A. Végh
& corumpia JRYY sicoramci /|

POLITICAL SCIENCE ® UNIVERSITAT

Talk Overview

@ Linear Program (LP)

e Polynomial vs Strongly Polynomial Algorithms

® LPs with < 2 variables per Inequality

® Minimum Cost Generalized Flow

o A Strongly Polynomial Interior Point Method

Linear Program (LP)

Primal: Dual:
min ¢’ x max b'y
s.t. Ax=0>b s.t. ATy <c

x>0

Linear Program (LP)

Primal: Dual:
min ¢’ x max b'y
s.t. Ax=5> s.t. ATy <c
x>0

e Introduced by [Kantorovich '39] [Hitchcock '41] [Koopmans '42]
[Dantzig '47].

LP Algorithms

Input: A€ R"™™ beR" ce&R™ Total bit length L.

LP Algorithms

Input: A€ R"™™ beR" ce&R™ Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

LP Algorithms

Input: A€ R"™™ beR" ce&R™ Total bit length L.
Def: A polynomial algorithm runs in poly(m, n, L) time.

e Polynomial algorithms for LP:

LP Algorithms

Input: A R™™ bpeR" ce€R™ Total bit length L.
Def: A polynomial algorithm runs in poly(m, n, L) time.

e Polynomial algorithms for LP:
» Ellipsoid method

LP Algorithms

Input: A€ R™™ beR" c € R™ Total bit length L.
Def: A polynomial algorithm runs in poly(m, n, L) time.

e Polynomial algorithms for LP:
» Ellipsoid method [Khachiyan '79]
» Interior point method [Karmarkar '84] [Renegar '88|

"B O\
[) ~
L YV &)
.) P
N\~~~

LP Algorithms

Input: A R™™ bpeR" ce€R™ Total bit length L.
Def: A polynomial algorithm runs in poly(m, n, L) time.

e Polynomial algorithms for LP:
» Ellipsoid method [Khachiyan '79]
» Interior point method [Karmarkar '84] [Renegar '88|

&I

NP

e Simplex method [Dantzig '47]

LP Algorithms

Input: A R™™ bpeR" ce€R™ Total bit length L.
Def: A polynomial algorithm runs in poly(m, n, L) time.

e Polynomial algorithms for LP:
» Ellipsoid method [Khachiyan '79]
» Interior point method [Karmarkar '84] [Renegar '88|

(ii\i/ Y

e Simplex method [Dantzig '47]

» Not known to be polynomial, but efficient in practice.

Strongly Polynomial

Input: A€ R™™ beR" ceR™ Total bit length L.

Strongly Polynomial

Input: A€ R™™ beR" ceR™ Total bit length L.

Def: An algorithm is strongly polynomial if it uses
@ poly(m, n) elementary arithmetic operations (+, —, X, +, <?), and

Strongly Polynomial

Input: A€ R™™ beR" ceR™ Total bit length L.

Def: An algorithm is strongly polynomial if it uses
@ poly(m, n) elementary arithmetic operations (+, —, X, +, <?), and
@® poly(m, n, L) space.

Strongly Polynomial

Input: A€ R™™ beR" ceR™ Total bit length L.

Def: An algorithm is strongly polynomial if it uses
@ poly(m, n) elementary arithmetic operations (+, —, X, +, <?), and
@® poly(m, n, L) space.

Smale’s 9th Problem

Is there a strongly polynomial algorithm for linear programming?

)

The Zoo of LP Subclasses

General LP = LP with < 3 variables per inequality

(Strongly polynomial (as of 2023)

r

Combinatorial LP:

e Shortest path
e Bipartite matching

e Maximum flow

e Minimum cost flow
N\

J

e LP feasibility with < 2

variables per inequality
e Discounted MDP

e Maximum generalized
flow

e Undiscounted MDP

e LP with < 2 variables
per inequality

The Zoo of LP Subclasses

General LP = LP with < 3 variables per inequality

(Strongly polynomial (as of 2024)

r

Combinatorial LP:

e Shortest path
e Bipartite matching

e Maximum flow

e Minimum cost flow
N\

J

e LP feasibility with < 2

variables per inequality
e Discounted MDP

e Maximum generalized
flow

P with < 2 variables

J

e Undiscounted MDP

2 Variables-per-Inequality LP

o Any 2-variables-per-inequality (2VPI) LP can be
reduced to the following monotone form:

max by
sst.veyj—vi<c Ve=(i,)),

where the edges come from a directed multigraph G = (V, E), and
Ye > 0 is the gain factor of the edge e.

Minimum Cost Generalized Flow

e The dual LP of a monotone 2VPI system is:

T

min ¢’ x
Z YeXe — Z Xe=b, VvevVv
665"‘) ee&out(v)

x>0

Interpretation: for directed multigraph G = (V,E), |V| = n,|E| = m,
node demands b € RY, arc costs ¢ € RE and gain factors v € RE,

find a minimum cost generalized flow satisfying all node demands.

Minimum Cost Generalized Flow

e The dual LP of a monotone 2VPI system is:

min ¢! x
Z YeXe — Z Xe=b, VvevVv
665"‘) ee&out(v)

x>0

Interpretation: for directed multigraph G = (V,E), |V| = n,|E| = m,
node demands b € RY, arc costs ¢ € RE and gain factors v € RE,

find a minimum cost generalized flow satisfying all node demands.

\m X% \/\/' Models leaky pipes,
/u 20 10,\)\) currency exchange etc.

Example: Production with Different Machines

e Variant of a problem proposed by in his paper
introducing Linear Programming.

Example: Production with Different Machines

e Variant of a problem proposed by in his paper
introducing Linear Programming.

e Machine i can produce ;; units of
o o part j in one day at cost cj.

e Daily demand d; for part j.

M: machines P: parts

Example: Production with Different Machines

e Variant of a problem proposed by in his paper
introducing Linear Programming.

e Machine i can produce ;; units of
o o part j in one day at cost cj.

e Daily demand d; for part j.

min E CijXjj

ieM,jepP
st Y <1 VieM
Jjepr
@) Y owxg=dp VjeP
ieM
x>0

M: machines P: parts

Prior Work

Prior Work

e Algorithms for for two-variable-per-inequality feasibility:
» Polynomial [Aspvall, Shiloach '80]

» Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94]
[Hochbaum, Naor '94] [Karczmarz '22]

Prior Work

e Algorithms for for two-variable-per-inequality feasibility:
» Polynomial [Aspvall, Shiloach '80]

» Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94]
[Hochbaum, Naor '94] [Karczmarz '22]

o Algorithms for generalized flow feasibility:
» Polynomial [Goldberg, Plotkin, Tardos '91]
» Strongly polynomial [Végh "13] [Olver, Végh '20]

Prior Work

e Algorithms for for two-variable-per-inequality feasibility:

» Polynomial [Aspvall, Shiloach '80]
» Strongly polynomial [Megiddo '83] [Cohen, Megiddo '94]
[Hochbaum, Naor '94] [Karczmarz '22]

o Algorithms for generalized flow feasibility:
» Polynomial [Goldberg, Plotkin, Tardos '91]
» Strongly polynomial [Végh "13] [Olver, Végh '20]

e Algorithms for minimum cost generalized flow:

» Polynomial [Wayne '02]

Main Result

Theorem [D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

Main Result

Theorem [D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

e The algorithm is based on the interior point method
by D

Main Result

Theorem [D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

e The algorithm is based on the interior point method
by D

e What we'll need for this talk:
@ Interior point method
@® Straight line complexity

Central Path

Central Path

e For each 1 > 0, there exists a unique
optimal solution x°P(u1) to

min ¢’ x — MZ log(x;)
i=1
s.t. Ax = b,x € RZ,.

Central Path

e For each 1 > 0, there exists a unique
optimal solution x°P(u) to

min ¢’ x — MZ log(x;)
i=1
s.t. Ax = b,x € RZ,.

Def: The central path is the curve

{(x®(n) - p > 0}.

Central Path

e For each 1 > 0, there exists a unique
optimal solution x°P(u) to

min ¢’ x — MZ log(x;)
i=1
s.t. Ax = b,x € RZ,.

Def: The central path is the curve
{xP(u) : p >0}

e As 1 — 0, x°P(u) converges to an optimal
solution x* of the LP.

Central Path

e For each 1 > 0, there exists a unique
optimal solution x°P(u) to

min ¢’ x — MZ log(x;)
i=1
s.t. Ax = b,x € RZ,.

Def: The central path is the curve
{xP(u) : p >0}

e As 1 — 0, x°P(u) converges to an optimal
solution x* of the LP.

e Interior Point Method (IPM): Walk down the
central path with geometrically decreasing p.

Alternate View of the Central Path

e Let us reparameterize x°P by the optimality gap:

c'xP(g)=c'x*+g Vg>0.

cTx=cTx*+g

Alternate View of the Central Path

e Let us reparameterize x°P by the optimality gap:

c'xP(g)=c'x*+g Vg>0.

cTx=cTx*+g

Intuition: Each coordinate of x°P(g) approximately as big as possible
subject to gap bound g.

Alternate View of the Central Path

e Let us reparameterize x°P by the optimality gap:

c'xP(g)=c'x" +g Vg > 0.
cTx=cTx*+g

Intuition: Each coordinate of x°P(g) approximately as big as possible
subject to gap bound g.

Def: The max central path is the curve {x™°P(g) : g > 0}, given by

mec
X! p

TP(g) = max x

s.t. x feasible

optimality gap < g.

Alternate View of the Central Path

e Let us reparameterize x°P by the optimality gap:

c'xP(g)=c'x" +g Vg > 0.
cTx=cTx*+g

Intuition: Each coordinate of x°P(g) approximately as big as possible
subject to gap bound g.

Def: The max central path is the curve {x™°P(g) : g > 0}, given by

mec
X! p

TP(g) = max x

s.t. x feasible

optimality gap < g.

Thm: i X™MP < xP L x™MeP,

Straight Line Complexity

Xi

mcp
X

cp
X;

1 mcp
4m”i

g

Straight Line Complexity

Xij
mcp
X

cp
X;

1 mcp
4m”i

g

e IPM generates a piecewise-affine curve x*!& near the central path

lxcp < Xalg < 2xCP = ixmcp < Xalg < WP
2 4m

Straight Line Complexity

Xij
mcp
X

cp
X;

1 mcp
4m”i

g

e IPM generates a piecewise-affine curve x*!& near the central path

lxcp < Xalg < 2xCP = ixmcp < Xalg < WP
2 4m

Straight Line Complexity

Xij
mcp
X

cp
X;

1 mcp
4m”i

g

e IPM generates a piecewise-affine curve x*!& near the central path

lxcp < Xalg < 2xCP = ixmcp < Xalg < WP
2 4m

Def: The straight line complexity of x;"?, SLCy(x;"P), is the minimum

number of pieces of a continuous piecewise-affine function h such that

X < h < X"P

Straight Line Complexity

Xi
mcp
X:
i
cp

X;

1 mcp
4m”i

g

e IPM generates a piecewise-affine curve x*!& near the central path

lxcp < Xalg < 2xCP = ixmcp < Xalg < WP
2 4m

Def: The straight line complexity of x;"?, SLCy(x;"P), is the minimum

number of pieces of a continuous piecewise-affine function h such that

X < h < X"P

Straight Line Complexity

e 7 iterations required by any IPM is at least

max SLC 1 (x,.me).

1
i€[m] 4m

Straight Line Complexity

e 7 iterations required by any IPM is at least

max SLC 1 (x"").

i€[m] %i

Theorem D

There is an interior point method which solves LP in

(st () Escer)

iterations.

Main Result

Theorem [D

For the minimum-cost generalized flow problem on G = (V/, E) with n
nodes and m arcs,

SLC1 (x."P) = O(mn) Ve c E.

e

Main Result

Theorem [D

For the minimum-cost generalized flow problem on G = (V/, E) with n
nodes and m arcs,

SLC1 (x."P) = O(mn) Ve € E.

e

Theorem D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem.

Main Result

Theorem [D

For the minimum-cost generalized flow problem on G = (V/, E) with n
nodes and m arcs,

SLC1 (x."P) = O(mn) Ve c E.

e Key ingredient: Circuits

Theorem [D

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem.

Circuits

Def: Let W = ker(A). A circuit is any vector f € W \ {0} such that
Ah e W\ {0} with supp(h) < supp(f).

Circuits

Def: Let W = ker(A). A circuit is any vector f € W \ {0} such that
Ah e W\ {0} with supp(h) < supp(f).

Example: Network flow movement subspace is

Ax =0 — Z Xe — Z xe=0 YveV
eesin(v) e€sout(v)

Circuits

Def: Let W = ker(A). A circuit is any vector f € W \ {0} such that
Ah e W\ {0} with supp(h) < supp(f).

Example: Network flow movement subspace is

Ax =0 — Z Xe — Z xe=0 YveV
eesin(v) e€sout(v)

e ker(A) = set of circulations.

Circuits

Def: Let W = ker(A). A circuit is any vector f € W \ {0} such that
Ah e W\ {0} with supp(h) < supp(f).

Example: Network flow movement subspace is

Ax =0 — Z Xe — Z xe=0 YveV

ecdin(v) ecsout(v)

e ker(A) = set of circulations. Circuits correspond to directed cycles.

\
I
_

ff=0

S X S
—
I
—

Circuits of Generalized Flow

Circuits of Generalized Flow

e Generalized flow movement subspace is

Ax =0 — Z YeXe — Z xe=0 YvevV
e€din(v) e€gsout(v)

Circuits of Generalized Flow

e Generalized flow movement subspace is

Ax =0 — Z YeXe — Z xe=0 YvevV
e€din(v) e€gsout(v)

e ker(A) = set of generalized circulations.

Circuits of Generalized Flow

e Generalized flow movement subspace is

Ax =0 — Z YeXe — Z xe=0 YvevV
e€din(v) e€gsout(v)

e ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle

Heec Ye=1

Circuits of Generalized Flow

e Generalized flow movement subspace is

Ax =0 — Z YeXe — Z xe=0 YvevV
e€din(v) e€gsout(v)

e ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle Bicycle

HeEC Ye = 1 HeECl Ye >1 HeECz Ve <1

flow-generating flow-absorbing

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if aslongasx*+—ff>0

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if as Iongasx*+—ff>0
Xe

mcp
Xe

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if as Iongasx*+—ff>0
Xe

mcp
Xe

c Xme
Fact: max xf > €

circuit C m '

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if as Iongasx*+—ff>0
Xe

mcp
Xe

c Xme
Fact: max xf > €

circuit C m '

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if aslongasx*+—ff>0

Xe
X;ncp

fC
MaXcircuit € Xe

c Xme
Fact: max xf > €

circuit C m '

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if as long as x* + ff>0

Xe
X;ncp

fC
MaXcircuit € Xe

mcp
Xe

m

g

c Xme
Fact: max xf > €

circuit C m

Upper Bounding the SLC

o f € ker(A) with ¢ f > 0 induces a line segment in the feasible region:

xf(g) = x +if as long as x* + ff>0

Xe
X;ncp

fC
MaXcircuit € Xe

mcp
Xe

m

g

c Xme
Fact: max xf > €

circuit C m

. C
Strategy: Find S C ker(A) such that maxses X! > L maxcireuie ¢ x{

— SLC (x™P) < 2|S].
3

Upper Bounding the SLC

o f € ker(A) with ¢"f > 0 induces a line segment in the feasible region:

xf(g) = x +if as long as x* + ff>0

Xe
X:‘Cp

fC
MaXcircuit € Xe

mcp
Xe

m

g

c Xme
Fact: max xf > €

circuit C m

. C
Strategy: Find S C ker(A) such that maxses X! > L maxcireuie ¢ x{

— SLC (x™P) < 2|S].
3

Upper Bounding the SLC

o f € ker(A) with ¢"f > 0 induces a line segment in the feasible region:

g
xf(g) = x* +—f as long as x* + ff>0
Xe
mcp
XE
f
maxresXe
/—/— MaXcircuit € Xe
/ X;n(;p
m
g
xmep

C
Fact: max xf > €

circuit C m

. C
Strategy: Find S C ker(A) such that maxses X! > L maxcireuie ¢ x{

— SLC (x™P) < 2|S].
3

Dominating Circuits

. C
Goal: Find small S C ker(A) such that maxres x! > 2> maxcireuie ¢ x£

Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

e Let C is a bicycle containing e.

Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

e Let C is a bicycle containing e.

Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

e Let C is a bicycle containing e.

e Given f € ker(A), what does x/ > X:C mean?

Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

e Let C is a bicycle containing e.

Xe

Xe

£C
€

e Given f € ker(A), what does x/ > X:C mean?

Dominating Circuits

Goal: Find small S C ker(A) such that maxses xf > % MaXecircuit Cx(fc

Recall: Circuits of generalized flow are conservative cycles and bicycles.

e Let C is a bicycle containing e.

Xe

e Given f € ker(A), what does x/ > X:C mean?

» It is cheaper to send flow on e via f than f€, and more flow can be
sent on e via f than fC.

Walk and Path Flows

Def: For s-t walk W = (ey, e,..., ex), the walk flow "V sending 1 unit
of flow into t is defined by

'Yeka L e fe‘,/v fevl/lvl € [k - 1]'

Walk and Path Flows

Def: For s-t walk W = (ey, e,..., ex), the walk flow "V sending 1 unit
of flow into t is defined by
£ = R =1fYielk—1].

a Ve & €it1)?

Ve Te

e By suitably replicating edges of E, will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
A walk flow is a path flow it passes through each vertex at most once.

Walk and Path Flows

Def: For s-t walk W = (ey, e,..., ex), the walk flow "V sending 1 unit
of flow into t is defined by
V=1, vt =", iclk-1]

’yek €; €1

’

e By suitably replicating edges of E, will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
A walk flow is a path flow it passes through each vertex at most once.

fW
w —

£’
w —

in-flow 1 at t

Dominating Paths by Walks

e Assumptions: edges have non-negative costs ¢ € RS,
edges have positive capacity u € RE, (allows us to assume x*

Def: For s-t walks W, W', we say that W’ dominates W if

. . /
Cost Domination : max £V ¢c. < max V¢,

eeW’ ecW
fW' fW
Flow Domination : max £— < max —.

eeW U, ecW U

Dominating Paths by Walks

e Assumptions: edges have non-negative costs ¢ € RS,
edges have positive capacity v € RE, (allows us to assume x* = 0).

Def: For s-t walks W, W', we say that W’ dominates W if

. . /
Cost Domination : max £V ¢c. < max V¢,

eeW’ eeW
w’ w
e
max —.

Flow Domination : max
eeW U, ecW U

w —— c=1
fW, v=10-1
W/ 3

in-flow 1 at t

Dominating Paths by Walks

e Assumptions: edges have non-negative costs ¢ € RS,
edges have positive capacity v € RE, (allows us to assume x* = 0).

Def: For s-t walks W, W', we say that W’ dominates W if

. . /
Cost Domination : max £V ¢c. < max V¢,

eeW’ eeW
w’ w
e
max —.

Flow Domination : max
eeW U, ecW U

w —— c=1
fW, v=10-1
W/ 3

in-flow 1 at t

Core Part of Proof

Find a small set W of n-recurrent s-t walks such that every s-t path is
dominated by some walk in W.

Dominating Paths by Walks

Theorem [D

For every s,t € V, there exists a set W of O(m?) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

Dominating Paths by Walks

Theorem [D

For every s,t € V, there exists a set W of O(m?) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

e For every walk W, assign a signature (e, er) where

w
L w o fe
ec = arg max cef, €f := arg max .
ecW eeW Ue

We call e. the cost bottleneck, and ef the flow bottleneck of W.

Dominating Paths by Walks

Theorem [D

For every s,t € V, there exists a set W of O(m?) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

e For every walk W, assign a signature (e, er) where

w
L w o fe
ec = arg max cef, €f := arg max .
ecW eeW Ue

We call e. the cost bottleneck, and ef the flow bottleneck of W.

c 1 1 1 1
u 10 4 8
s 4 2

e
O
O
O

~+O

Dominating Paths by Walks

Theorem [D

For every s,t € V, there exists a set W of O(m?) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

e For every walk W, assign a signature (e, er) where

w
L w o fe
ec = arg max cef, €f := arg max .
ecW eeW Ue

We call e. the cost bottleneck, and ef the flow bottleneck of W.

c 1 1 1 1
u 10 4 8
v 4 3 2

e
O
O
O

~+O

Dominating Paths by Walks

Theorem [D

For every s,t € V, there exists a set W of O(m?) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

e For every walk W, assign a signature (e, er) where

w
L w o fe
ec = arg max cef, €f := arg max .
ecW eeW Ue

We call e. the cost bottleneck, and ef the flow bottleneck of W.

c 1 1 1 1
u 10 7 4 8
v 4 3 2

e
O
O
O

~+O

€c er

Path Patching

Path Patching

e Let P be an s-t path with signature (e, ef).

16
O

€c er

O

~QO

Path Patching

e Let P be an s-t path with signature (e, ef).

e
O
O
O
O

~+O

€c er

Def: Let patch(P) be the walk obtained from P by replacing the e.-ef
subpath with a max gain e.-er path of signature (e, ef).

Path Patching

e Let P be an s-t path with signature (e, ef).

e}
O
~QO

Def: Let patch(P) be the walk obtained from P by replacing the e.-ef
subpath with a max gain e.-er path of signature (e, ef).

Path Patching

e Let P be an s-t path with signature (e, ef).

e}
O
~QO

Def: Let patch(P) be the walk obtained from P by replacing the e.-ef
subpath with a max gain e.-er path of signature (e, ef).

Patching Lemma:
@ patch(P) dominates P.

Path Patching

e Let P be an s-t path with signature (e, ef).

e}
O
~QO

Def: Let patch(P) be the walk obtained from P by replacing the e.-ef
subpath with a max gain e.-er path of signature (e, ef).

Patching Lemma:
@ patch(P) dominates P.

@® The signature of patch(P) is either (e, er) or (e, er), where €.
comes after er.

Path Patching

e Let P be an s-t path with signature (e, ef).

e}
O
~QO

Def: Let patch(P) be the walk obtained from P by replacing the e.-ef
subpath with a max gain e.-er path of signature (e, ef).

Patching Lemma:
@ patch(P) dominates P.

@® The signature of patch(P) is either (e, er) or (e, er), where €.
comes after er.

Dominating Paths by Walks

Dominating Paths by Walks

e For an s-t path P, let Wi, Ws, ..., W be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W, = patch(P) W; = patch(W;_1) Vi >2.

Dominating Paths by Walks

e For an s-t path P, let Wi, Ws, ..., W be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W, = patch(P) W; = patch(W;_1) Vi >2.

e By patching lemma, W dominates P and k < n.

Dominating Paths by Walks

e For an s-t path P, let Wi, Ws, ..., W be the sequence of walks

obtained by repeatedly patching until the signature stops changing, i.e.

W, = patch(P) W; = patch(W;_1) Vi >2.

e By patching lemma, W dominates P and k < n.

o)
o)
o

S €c €f

~O

Dominating Paths by Walks

e For an s-t path P, let Wi, Ws, ..., W be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W, = patch(P) W; = patch(W;_1) Vi >2.

e By patching lemma, W dominates P and k < n.

o)
o)
o

max gain ec-er path
with signature (e, ef)

~O

Dominating Paths by Walks

e For an s-t path P, let Wi, Ws, ..., W be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W, = patch(P) W; = patch(W;_1) Vi >2.

e By patching lemma, W dominates P and k < n.

> 8, O YO
3 ec er
n-recurrent s-e. walk: max gain ec-er path
every arc is used with signature (e, er)

at most n times

~O

Dominating Paths by Walks

e For an s-t path P, let Wi, Ws, ..., W be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W, = patch(P) W; = patch(W;_1) Vi >2.

e By patching lemma, W dominates P and k < n.

~O

> >0 »O O
s ec er
n-recurrent s-e. walk: max gain ec-er path er-t path
every arc is used with signature (e, er)

at most n times

The Dominating Set of Walks W

e For every signature (e, er),

The Dominating Set of Walks W

e For every signature (e, er),

@ Start with a max gain ec-er path with signature (e, ef).

€c

The Dominating Set of Walks W

e For every signature (e, er),
@ Start with a max gain ec-er path with signature (e, ef).

® Append a max gain n-recurrent s-e. walk which preserves signature.

Y
Y
C

~
O

5 €c

The Dominating Set of Walks W

e For every signature (e, er),
@ Start with a max gain ec-er path with signature (e, ef).
® Append a max gain n-recurrent s-e. walk which preserves signature.

© Append a max gain ef-t path which preserves signature.

C

C

O
~0

The Dominating Set of Walks W

e For every signature (e, er),
@ Start with a max gain ec-er path with signature (e, ef).
® Append a max gain n-recurrent s-e. walk which preserves signature.

© Append a max gain ef-t path which preserves signature.

X

x

e
~0

e Analogous construction for the case where e, comes after er.

The Dominating Set of Walks W

e For every signature (e, er),
@ Start with a max gain ec-er path with signature (e, ef).
® Append a max gain n-recurrent s-e. walk which preserves signature.

© Append a max gain ef-t path which preserves signature.

X

x

e
~0

e Analogous construction for the case where e, comes after er.

o W| = 0(m?).

Conclusion

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).

e Strongly polynomial algorithm for LPs with < 2 variables per inequality.

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).
e Strongly polynomial algorithm for LPs with < 2 variables per inequality.
° There exist LPs with

SLCy(xP) = 2%Um),

1

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).
e Strongly polynomial algorithm for LPs with < 2 variables per inequality.

° There exist LPs with

SLCy(xP) = 2%Um),

1

e Future directions:
» Develop a theory of SLC for LPs.

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).
e Strongly polynomial algorithm for LPs with < 2 variables per inequality.

° There exist LPs with

SLCy(xP) = 2%Um),

1

e Future directions:
» Develop a theory of SLC for LPs.

» Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).
e Strongly polynomial algorithm for LPs with < 2 variables per inequality.
° There exist LPs with

SLCy(xP) = 2%Um),
e Future directions:
» Develop a theory of SLC for LPs.
» Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.
» Faster strongly polynomial algorithm for minimum cost generalized
flow.

Conclusion

e SLC of minimum cost generalized flow is poly(m, n).
e Strongly polynomial algorithm for LPs with < 2 variables per inequality.
° There exist LPs with

SLCy(xP) = 2%Um),
e Future directions:
» Develop a theory of SLC for LPs.
» Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.
» Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

