
A strongly polynomial algorithm for linear
programs with at most two non-zero entries per

row or column

Daniel Dadush

STACS 2025

Joint work with

Zhuan Khye Koh Bento Natura Neil Olver László A. Végh

Talk Overview

1 Linear Program (LP)

• Polynomial vs Strongly Polynomial Algorithms

2 LPs with ≤ 2 variables per Inequality

3 Minimum Cost Generalized Flow

4 A Strongly Polynomial Interior Point Method

Linear Program (LP)

Primal:

min c⊤x

s. t. Ax = b

x ≥ 0

Dual:

max b⊤y

s. t. A⊤y ≤ c

• Introduced by [Kantorovich ’39] [Hitchcock ’41] [Koopmans ’42]
[Dantzig ’47].

Linear Program (LP)

Primal:

min c⊤x

s. t. Ax = b

x ≥ 0

Dual:

max b⊤y

s. t. A⊤y ≤ c

• Introduced by [Kantorovich ’39] [Hitchcock ’41] [Koopmans ’42]
[Dantzig ’47].

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

LP Algorithms

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: A polynomial algorithm runs in poly(m, n, L) time.

• Polynomial algorithms for LP:

▶ Ellipsoid method [Khachiyan ’79]

▶ Interior point method [Karmarkar ’84] [Renegar ’88]

• Simplex method [Dantzig ’47]

▶ Not known to be polynomial, but efficient in practice.

Strongly Polynomial

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

1 poly(m, n) elementary arithmetic operations (+,−,×,÷, <?), and

2 poly(m, n, L) space.

Smale’s 9th Problem [Megiddo ’83]

Is there a strongly polynomial algorithm for linear programming?

Strongly Polynomial

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

1 poly(m, n) elementary arithmetic operations (+,−,×,÷, <?), and

2 poly(m, n, L) space.

Smale’s 9th Problem [Megiddo ’83]

Is there a strongly polynomial algorithm for linear programming?

Strongly Polynomial

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

1 poly(m, n) elementary arithmetic operations (+,−,×,÷, <?), and

2 poly(m, n, L) space.

Smale’s 9th Problem [Megiddo ’83]

Is there a strongly polynomial algorithm for linear programming?

Strongly Polynomial

Input: A ∈ Rn×m, b ∈ Rn, c ∈ Rm. Total bit length L.

Def: An algorithm is strongly polynomial if it uses

1 poly(m, n) elementary arithmetic operations (+,−,×,÷, <?), and

2 poly(m, n, L) space.

Smale’s 9th Problem [Megiddo ’83]

Is there a strongly polynomial algorithm for linear programming?

The Zoo of LP Subclasses

Combinatorial LP:

Strongly polynomial (as of 2023)

General LP ≡ LP with ≤ 3 variables per inequality

• Shortest path

• Bipartite matching

• Maximum flow

• Minimum cost flow

• LP feasibility with ≤ 2
variables per inequality

• Discounted MDP

• Maximum generalized

flow

• Undiscounted MDP

• LP with ≤ 2 variables

per inequality

The Zoo of LP Subclasses

Combinatorial LP:

Strongly polynomial (as of 2024)

General LP ≡ LP with ≤ 3 variables per inequality

• Shortest path

• Bipartite matching

• Maximum flow

• Minimum cost flow

• LP feasibility with ≤ 2
variables per inequality

• Discounted MDP

• Maximum generalized

flow

• LP with ≤ 2 variables

per inequality

• Undiscounted MDP

2 Variables-per-Inequality LP

• [Hochbaum ’04] Any 2-variables-per-inequality (2VPI) LP can be
reduced to the following monotone form:

max b⊤y

s. t. γeyj − yi ≤ ce ∀e = (i , j),

where the edges come from a directed multigraph G = (V ,E), and
γe > 0 is the gain factor of the edge e.

Minimum Cost Generalized Flow

• The dual LP of a monotone 2VPI system is:

min c⊤x

s. t.
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = bv ∀v ∈ V

x ≥ 0

Interpretation: for directed multigraph G = (V ,E), |V | = n,|E | = m,
node demands b ∈ RV , arc costs c ∈ RE and gain factors γ ∈ RE

>0,

find a minimum cost generalized flow satisfying all node demands.

Models leaky pipes,

currency exchange etc.

× 1
2

20 10

Minimum Cost Generalized Flow

• The dual LP of a monotone 2VPI system is:

min c⊤x

s. t.
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = bv ∀v ∈ V

x ≥ 0

Interpretation: for directed multigraph G = (V ,E), |V | = n,|E | = m,
node demands b ∈ RV , arc costs c ∈ RE and gain factors γ ∈ RE

>0,

find a minimum cost generalized flow satisfying all node demands.

Models leaky pipes,

currency exchange etc.

× 1
2

20 10

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper
introducing Linear Programming.

i

j

M: machines P: parts

γij

• Machine i can produce γij units of
part j in one day at cost cij .

• Daily demand dj for part j .

min
∑

i∈M,j∈P

cijxij

s. t.
∑
j∈P

xij ≤ 1 ∀i ∈ M

∑
i∈M

γijxij ≥ dj ∀j ∈ P

x ≥ 0

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper
introducing Linear Programming.

i

j

M: machines P: parts

γij

• Machine i can produce γij units of
part j in one day at cost cij .

• Daily demand dj for part j .

min
∑

i∈M,j∈P

cijxij

s. t.
∑
j∈P

xij ≤ 1 ∀i ∈ M

∑
i∈M

γijxij ≥ dj ∀j ∈ P

x ≥ 0

Example: Production with Different Machines

• Variant of a problem proposed by Kantorovich in his 1939 paper
introducing Linear Programming.

i

j

M: machines P: parts

γij

• Machine i can produce γij units of
part j in one day at cost cij .

• Daily demand dj for part j .

min
∑

i∈M,j∈P

cijxij

s. t.
∑
j∈P

xij ≤ 1 ∀i ∈ M

∑
i∈M

γijxij ≥ dj ∀j ∈ P

x ≥ 0

Prior Work

• Algorithms for for two-variable-per-inequality feasibility:

▶ Polynomial [Aspvall, Shiloach ’80]

▶ Strongly polynomial [Megiddo ’83] [Cohen, Megiddo ’94]
[Hochbaum, Naor ’94] [Karczmarz ’22]

• Algorithms for generalized flow feasibility:

▶ Polynomial [Goldberg, Plotkin, Tardos ’91]

▶ Strongly polynomial [Végh ’13] [Olver, Végh ’20]

• Algorithms for minimum cost generalized flow:

▶ Polynomial [Wayne ’02]

Prior Work

• Algorithms for for two-variable-per-inequality feasibility:

▶ Polynomial [Aspvall, Shiloach ’80]

▶ Strongly polynomial [Megiddo ’83] [Cohen, Megiddo ’94]
[Hochbaum, Naor ’94] [Karczmarz ’22]

• Algorithms for generalized flow feasibility:

▶ Polynomial [Goldberg, Plotkin, Tardos ’91]

▶ Strongly polynomial [Végh ’13] [Olver, Végh ’20]

• Algorithms for minimum cost generalized flow:

▶ Polynomial [Wayne ’02]

Prior Work

• Algorithms for for two-variable-per-inequality feasibility:

▶ Polynomial [Aspvall, Shiloach ’80]

▶ Strongly polynomial [Megiddo ’83] [Cohen, Megiddo ’94]
[Hochbaum, Naor ’94] [Karczmarz ’22]

• Algorithms for generalized flow feasibility:

▶ Polynomial [Goldberg, Plotkin, Tardos ’91]

▶ Strongly polynomial [Végh ’13] [Olver, Végh ’20]

• Algorithms for minimum cost generalized flow:

▶ Polynomial [Wayne ’02]

Prior Work

• Algorithms for for two-variable-per-inequality feasibility:

▶ Polynomial [Aspvall, Shiloach ’80]

▶ Strongly polynomial [Megiddo ’83] [Cohen, Megiddo ’94]
[Hochbaum, Naor ’94] [Karczmarz ’22]

• Algorithms for generalized flow feasibility:

▶ Polynomial [Goldberg, Plotkin, Tardos ’91]

▶ Strongly polynomial [Végh ’13] [Olver, Végh ’20]

• Algorithms for minimum cost generalized flow:

▶ Polynomial [Wayne ’02]

Main Result

Theorem [D, Koh, Natura, Olver, Végh ’24]

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

• The algorithm is based on the interior point method
by [Allamigeon, D, Loho, Natura, Végh ’22].

• What we’ll need for this talk:

1 Interior point method

2 Straight line complexity

Main Result

Theorem [D, Koh, Natura, Olver, Végh ’24]

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

• The algorithm is based on the interior point method
by [Allamigeon, D, Loho, Natura, Végh ’22].

• What we’ll need for this talk:

1 Interior point method

2 Straight line complexity

Main Result

Theorem [D, Koh, Natura, Olver, Végh ’24]

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem, and consequently, for LPs with at most 2
variables per inequality or 2 variables per column.

• The algorithm is based on the interior point method
by [Allamigeon, D, Loho, Natura, Végh ’22].

• What we’ll need for this talk:

1 Interior point method

2 Straight line complexity

Central Path

• For each µ > 0, there exists a unique
optimal solution xcp(µ) to

min c⊤x − µ
n∑

i=1

log(xi)

s. t. Ax = b, x ∈ Rm
≥0.

Def: The central path is the curve

{xcp(µ) : µ > 0}.

• As µ → 0, xcp(µ) converges to an optimal
solution x∗ of the LP.

• Interior Point Method (IPM): Walk down the
central path with geometrically decreasing µ.

x∗

x

Central Path

• For each µ > 0, there exists a unique
optimal solution xcp(µ) to

min c⊤x − µ

n∑
i=1

log(xi)

s. t. Ax = b, x ∈ Rm
≥0.

Def: The central path is the curve

{xcp(µ) : µ > 0}.

• As µ → 0, xcp(µ) converges to an optimal
solution x∗ of the LP.

• Interior Point Method (IPM): Walk down the
central path with geometrically decreasing µ.

x∗

x

Central Path

• For each µ > 0, there exists a unique
optimal solution xcp(µ) to

min c⊤x − µ

n∑
i=1

log(xi)

s. t. Ax = b, x ∈ Rm
≥0.

Def: The central path is the curve

{xcp(µ) : µ > 0}.

• As µ → 0, xcp(µ) converges to an optimal
solution x∗ of the LP.

• Interior Point Method (IPM): Walk down the
central path with geometrically decreasing µ.

x∗

x

Central Path

• For each µ > 0, there exists a unique
optimal solution xcp(µ) to

min c⊤x − µ

n∑
i=1

log(xi)

s. t. Ax = b, x ∈ Rm
≥0.

Def: The central path is the curve

{xcp(µ) : µ > 0}.

• As µ → 0, xcp(µ) converges to an optimal
solution x∗ of the LP.

• Interior Point Method (IPM): Walk down the
central path with geometrically decreasing µ.

x∗

x

Central Path

• For each µ > 0, there exists a unique
optimal solution xcp(µ) to

min c⊤x − µ

n∑
i=1

log(xi)

s. t. Ax = b, x ∈ Rm
≥0.

Def: The central path is the curve

{xcp(µ) : µ > 0}.

• As µ → 0, xcp(µ) converges to an optimal
solution x∗ of the LP.

• Interior Point Method (IPM): Walk down the
central path with geometrically decreasing µ.

x∗

x

Alternate View of the Central Path

• Let us reparameterize xcp by the optimality gap:

c⊤xcp(g) = c⊤x∗ + g ∀g ≥ 0.

x∗

x

c⊤x = c⊤x∗ + g

Intuition: Each coordinate of xcp(g) approximately as big as possible
subject to gap bound g .

Def: The max central path is the curve {xmcp(g) : g ≥ 0}, given by

xmcp
i (g) := max xi

s. t. x feasible

optimality gap ≤ g .

Thm: 1
2m xmcp ≤ xcp ≤ xmcp.

Alternate View of the Central Path

• Let us reparameterize xcp by the optimality gap:

c⊤xcp(g) = c⊤x∗ + g ∀g ≥ 0.

x∗

x

c⊤x = c⊤x∗ + g

Intuition: Each coordinate of xcp(g) approximately as big as possible
subject to gap bound g .

Def: The max central path is the curve {xmcp(g) : g ≥ 0}, given by

xmcp
i (g) := max xi

s. t. x feasible

optimality gap ≤ g .

Thm: 1
2m xmcp ≤ xcp ≤ xmcp.

Alternate View of the Central Path

• Let us reparameterize xcp by the optimality gap:

c⊤xcp(g) = c⊤x∗ + g ∀g ≥ 0.

x∗

x

c⊤x = c⊤x∗ + g

Intuition: Each coordinate of xcp(g) approximately as big as possible
subject to gap bound g .

Def: The max central path is the curve {xmcp(g) : g ≥ 0}, given by

xmcp
i (g) := max xi

s. t. x feasible

optimality gap ≤ g .

Thm: 1
2m xmcp ≤ xcp ≤ xmcp.

Alternate View of the Central Path

• Let us reparameterize xcp by the optimality gap:

c⊤xcp(g) = c⊤x∗ + g ∀g ≥ 0.

x∗

x

c⊤x = c⊤x∗ + g

Intuition: Each coordinate of xcp(g) approximately as big as possible
subject to gap bound g .

Def: The max central path is the curve {xmcp(g) : g ≥ 0}, given by

xmcp
i (g) := max xi

s. t. x feasible

optimality gap ≤ g .

Thm: 1
2m xmcp ≤ xcp ≤ xmcp.

Straight Line Complexity

g

xi
xmcp
i

1
4m

xmcp
i

xalg
i

xcp
i

• IPM generates a piecewise-affine curve xalg near the central path

1

2
xcp ≤ xalg ≤ 2xcp ⇒ 1

4m
xmcp ≤ xalg ≤ xmcp.

Def: The straight line complexity of xmcp
i , SLCθ(x

mcp
i), is the minimum

number of pieces of a continuous piecewise-affine function h such that

θxmcp
i ≤ h ≤ xmcp

i .

Straight Line Complexity

g

xi
xmcp
i

1
4m

xmcp
i

xalg
i

xcp
i

• IPM generates a piecewise-affine curve xalg near the central path

1

2
xcp ≤ xalg ≤ 2xcp ⇒ 1

4m
xmcp ≤ xalg ≤ xmcp.

Def: The straight line complexity of xmcp
i , SLCθ(x

mcp
i), is the minimum

number of pieces of a continuous piecewise-affine function h such that

θxmcp
i ≤ h ≤ xmcp

i .

Straight Line Complexity

g

xi
xmcp
i

1
4m

xmcp
i

xalg
i

xcp
i

• IPM generates a piecewise-affine curve xalg near the central path

1

2
xcp ≤ xalg ≤ 2xcp ⇒ 1

4m
xmcp ≤ xalg ≤ xmcp.

Def: The straight line complexity of xmcp
i , SLCθ(x

mcp
i), is the minimum

number of pieces of a continuous piecewise-affine function h such that

θxmcp
i ≤ h ≤ xmcp

i .

Straight Line Complexity

g

xi
xmcp
i

1
4m

xmcp
i

xalg
i

xcp
i

• IPM generates a piecewise-affine curve xalg near the central path

1

2
xcp ≤ xalg ≤ 2xcp ⇒ 1

4m
xmcp ≤ xalg ≤ xmcp.

Def: The straight line complexity of xmcp
i , SLCθ(x

mcp
i), is the minimum

number of pieces of a continuous piecewise-affine function h such that

θxmcp
i ≤ h ≤ xmcp

i .

Straight Line Complexity

g

xi
xmcp
i

1
4m

xmcp
i

xalg
i

xcp
i

• IPM generates a piecewise-affine curve xalg near the central path

1

2
xcp ≤ xalg ≤ 2xcp ⇒ 1

4m
xmcp ≤ xalg ≤ xmcp.

Def: The straight line complexity of xmcp
i , SLCθ(x

mcp
i), is the minimum

number of pieces of a continuous piecewise-affine function h such that

θxmcp
i ≤ h ≤ xmcp

i .

Straight Line Complexity

• # iterations required by any IPM is at least

max
i∈[m]

SLC 1
4m
(xmcp

i).

Theorem [Allamigeon, D, Loho, Natura, Végh ’22]

There is an interior point method which solves LP in

O

(
min

θ∈(0,1]

√
m log

(m
θ

) m∑
i=1

SLCθ(x
mcp
i)

)

iterations.

Straight Line Complexity

• # iterations required by any IPM is at least

max
i∈[m]

SLC 1
4m
(xmcp

i).

Theorem [Allamigeon, D, Loho, Natura, Végh ’22]

There is an interior point method which solves LP in

O

(
min

θ∈(0,1]

√
m log

(m
θ

) m∑
i=1

SLCθ(x
mcp
i)

)

iterations.

Main Result

Theorem [D, Koh, Natura, Olver, Végh ’23]

For the minimum-cost generalized flow problem on G = (V ,E) with n
nodes and m arcs,

SLC 1
m
(xmcp

e) = O(mn) ∀e ∈ E .

• Key ingredient: Circuits

Theorem [D, Koh, Natura, Olver, Végh ’24]

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem.

Main Result

Theorem [D, Koh, Natura, Olver, Végh ’23]

For the minimum-cost generalized flow problem on G = (V ,E) with n
nodes and m arcs,

SLC 1
m
(xmcp

e) = O(mn) ∀e ∈ E .

• Key ingredient: Circuits

Theorem [D, Koh, Natura, Olver, Végh ’24]

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem.

Main Result

Theorem [D, Koh, Natura, Olver, Végh ’23]

For the minimum-cost generalized flow problem on G = (V ,E) with n
nodes and m arcs,

SLC 1
m
(xmcp

e) = O(mn) ∀e ∈ E .

• Key ingredient: Circuits

Theorem [D, Koh, Natura, Olver, Végh ’24]

There is a strongly polynomial algorithm for the minimum cost
generalized flow problem.

Circuits

Def: Let W = ker(A). A circuit is any vector f ∈ W \ {0} such that
∄h ∈ W \ {0} with supp(h) ⊊ supp(f).

Example: Network flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

xe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of circulations. Circuits correspond to directed cycles.

i

j k

ℓ

C1

1

1

1
i

j

k

ℓ

−1

1 −1

1 −1

1 −1

1

1 1 1 1

f C = 0

Circuits

Def: Let W = ker(A). A circuit is any vector f ∈ W \ {0} such that
∄h ∈ W \ {0} with supp(h) ⊊ supp(f).

Example: Network flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

xe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of circulations. Circuits correspond to directed cycles.

i

j k

ℓ

C1

1

1

1
i

j

k

ℓ

−1

1 −1

1 −1

1 −1

1

1 1 1 1

f C = 0

Circuits

Def: Let W = ker(A). A circuit is any vector f ∈ W \ {0} such that
∄h ∈ W \ {0} with supp(h) ⊊ supp(f).

Example: Network flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

xe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of circulations.

Circuits correspond to directed cycles.

i

j k

ℓ

C1

1

1

1
i

j

k

ℓ

−1

1 −1

1 −1

1 −1

1

1 1 1 1

f C = 0

Circuits

Def: Let W = ker(A). A circuit is any vector f ∈ W \ {0} such that
∄h ∈ W \ {0} with supp(h) ⊊ supp(f).

Example: Network flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

xe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of circulations. Circuits correspond to directed cycles.

i

j k

ℓ

C1

1

1

1
i

j

k

ℓ

−1

1 −1

1 −1

1 −1

1

1 1 1 1

f C = 0

Circuits of Generalized Flow

• Generalized flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle

C

∏
e∈C γe = 1

Bicycle

C1 C2

∏
e∈C1

γe > 1

flow-generating

∏
e∈C2

γe < 1

flow-absorbing

Circuits of Generalized Flow

• Generalized flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle

C

∏
e∈C γe = 1

Bicycle

C1 C2

∏
e∈C1

γe > 1

flow-generating

∏
e∈C2

γe < 1

flow-absorbing

Circuits of Generalized Flow

• Generalized flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of generalized circulations.

2 types of circuits:

Conservative cycle

C

∏
e∈C γe = 1

Bicycle

C1 C2

∏
e∈C1

γe > 1

flow-generating

∏
e∈C2

γe < 1

flow-absorbing

Circuits of Generalized Flow

• Generalized flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle

C

∏
e∈C γe = 1

Bicycle

C1 C2

∏
e∈C1

γe > 1

flow-generating

∏
e∈C2

γe < 1

flow-absorbing

Circuits of Generalized Flow

• Generalized flow movement subspace is

Ax = 0 ⇐⇒
∑

e∈δin(v)

γexe −
∑

e∈δout(v)

xe = 0 ∀v ∈ V

• ker(A) = set of generalized circulations. 2 types of circuits:

Conservative cycle

C

∏
e∈C γe = 1

Bicycle

C1 C2

∏
e∈C1

γe > 1

flow-generating

∏
e∈C2

γe < 1

flow-absorbing

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

x f
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

x f
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Upper Bounding the SLC

• f ∈ ker(A) with c⊤f > 0 induces a line segment in the feasible region:

x f (g) := x∗ +
g

c⊤f
f as long as x∗ +

g

c⊤f
f ≥ 0

g

xe
xmcp
e

maxcircuit C x f C

e

maxf∈S x
f
e

xmcp
e
m

Fact: max
circuit C

x f
C

e ≥ xmcp
e

m
.

Strategy: Find S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

=⇒ SLC 1
m3
(xmcp

e) ≤ 2|S |.

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Dominating Circuits

Goal: Find small S ⊆ ker(A) such that maxf∈S x
f
e ≥ 1

m2 maxcircuit C x f
C

e .

Recall: Circuits of generalized flow are conservative cycles and bicycles.

• Let C is a bicycle containing e.

2

3

4

e
1

4

3

2

g

xe

x f
e

x f C

e

• Given f ∈ ker(A), what does x fe ≥ x f
C

e mean?

▶ It is cheaper to send flow on e via f than f C , and more flow can be
sent on e via f than f C .

Walk and Path Flows

Def: For s-t walk W = (e1, e2, . . . , ek), the walk flow f W sending 1 unit
of flow into t is defined by

γek f
W
ek = 1, γei f

W
ei = f Wei+1

, i ∈ [k − 1].

• By suitably replicating edges of E , will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
A walk flow is a path flow it passes through each vertex at most once.

s t
in-flow 1 at t

W

W ′

4 3 2 1

5 1
f W

f W
′

Walk and Path Flows

Def: For s-t walk W = (e1, e2, . . . , ek), the walk flow f W sending 1 unit
of flow into t is defined by

γek f
W
ek = 1, γei f

W
ei = f Wei+1

, i ∈ [k − 1].

• By suitably replicating edges of E , will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
A walk flow is a path flow it passes through each vertex at most once.

s t
in-flow 1 at t

W

W ′

4 3 2 1

5 1
f W

f W
′

Walk and Path Flows

Def: For s-t walk W = (e1, e2, . . . , ek), the walk flow f W sending 1 unit
of flow into t is defined by

γek f
W
ek = 1, γei f

W
ei = f Wei+1

, i ∈ [k − 1].

• By suitably replicating edges of E , will assume that edges of W are
distinct. W is k-recurrent if it replicates original edges at most k times.
A walk flow is a path flow it passes through each vertex at most once.

s t
in-flow 1 at t

W

W ′

4 3 2 1

5 1
f W

f W
′

Dominating Paths by Walks

• Assumptions: edges have non-negative costs c ∈ RE
≥0,

edges have positive capacity u ∈ RE
>0 (allows us to assume x∗ = 0).

Def: For s-t walks W ,W ′, we say that W ′ dominates W if

Cost Domination : max
e∈W ′

f W
′

e ce ≤ max
e∈W

f We ce ,

Flow Domination : max
e∈W

f W
′

e

ue
≤ max

e∈W

f We
ue

.

s t
in-flow 1 at t

W

W ′

c = 1

u = 10 · 1

4 3 2 1

5 1
f W

f W
′

Core Part of Proof

Find a small set W of n-recurrent s-t walks such that every s-t path is
dominated by some walk in W.

Dominating Paths by Walks

• Assumptions: edges have non-negative costs c ∈ RE
≥0,

edges have positive capacity u ∈ RE
>0 (allows us to assume x∗ = 0).

Def: For s-t walks W ,W ′, we say that W ′ dominates W if

Cost Domination : max
e∈W ′

f W
′

e ce ≤ max
e∈W

f We ce ,

Flow Domination : max
e∈W

f W
′

e

ue
≤ max

e∈W

f We
ue

.

s t
in-flow 1 at t

W

W ′

c = 1

u = 10 · 1

4 3 2 1

5 1
f W

f W
′

Core Part of Proof

Find a small set W of n-recurrent s-t walks such that every s-t path is
dominated by some walk in W.

Dominating Paths by Walks

• Assumptions: edges have non-negative costs c ∈ RE
≥0,

edges have positive capacity u ∈ RE
>0 (allows us to assume x∗ = 0).

Def: For s-t walks W ,W ′, we say that W ′ dominates W if

Cost Domination : max
e∈W ′

f W
′

e ce ≤ max
e∈W

f We ce ,

Flow Domination : max
e∈W

f W
′

e

ue
≤ max

e∈W

f We
ue

.

s t
in-flow 1 at t

W

W ′

c = 1

u = 10 · 1

4 3 2 1

5 1
f W

f W
′

Core Part of Proof

Find a small set W of n-recurrent s-t walks such that every s-t path is
dominated by some walk in W.

Dominating Paths by Walks

Theorem [D, Koh, Natura, Olver, Végh ’23]

For every s, t ∈ V , there exists a set W of O(m2) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

• For every walk W , assign a signature (ec , ef) where

ec := argmax
e∈W

ce f
W
e ef := argmax

e∈W

f We
ue

.

We call ec the cost bottleneck, and ef the flow bottleneck of W .

s t

f W

u

c

4

10

1

ec

3

7

1

2

4

1

ef

1

8

1

Dominating Paths by Walks

Theorem [D, Koh, Natura, Olver, Végh ’23]

For every s, t ∈ V , there exists a set W of O(m2) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

• For every walk W , assign a signature (ec , ef) where

ec := argmax
e∈W

ce f
W
e ef := argmax

e∈W

f We
ue

.

We call ec the cost bottleneck, and ef the flow bottleneck of W .

s t

f W

u

c

4

10

1

ec

3

7

1

2

4

1

ef

1

8

1

Dominating Paths by Walks

Theorem [D, Koh, Natura, Olver, Végh ’23]

For every s, t ∈ V , there exists a set W of O(m2) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

• For every walk W , assign a signature (ec , ef) where

ec := argmax
e∈W

ce f
W
e ef := argmax

e∈W

f We
ue

.

We call ec the cost bottleneck, and ef the flow bottleneck of W .

s t

f W

u

c

4

10

1

4

10

1

ec

3

7

1

2

4

1

2

4

1

ef

1

8

1

Dominating Paths by Walks

Theorem [D, Koh, Natura, Olver, Végh ’23]

For every s, t ∈ V , there exists a set W of O(m2) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

• For every walk W , assign a signature (ec , ef) where

ec := argmax
e∈W

ce f
W
e ef := argmax

e∈W

f We
ue

.

We call ec the cost bottleneck, and ef the flow bottleneck of W .

s t

f W

u

c

4

10

1

ec

3

7

1

2

4

1

2

4

1

ef

1

8

1

Dominating Paths by Walks

Theorem [D, Koh, Natura, Olver, Végh ’23]

For every s, t ∈ V , there exists a set W of O(m2) n-recurrent s-t walks
such that every s-t path is dominated by some walk in W.

• For every walk W , assign a signature (ec , ef) where

ec := argmax
e∈W

ce f
W
e ef := argmax

e∈W

f We
ue

.

We call ec the cost bottleneck, and ef the flow bottleneck of W .

s t

f W

u

c

4

10

1

ec

3

7

1

2

4

1

ef

1

8

1

Path Patching

• Let P be an s-t path with signature (ec , ef).

s t

ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Path Patching

• Let P be an s-t path with signature (ec , ef).

s tec ef

ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Path Patching

• Let P be an s-t path with signature (ec , ef).

s tec ef

ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Path Patching

• Let P be an s-t path with signature (ec , ef).

s tec ef

ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Path Patching

• Let P be an s-t path with signature (ec , ef).

s tec ef

ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Path Patching

• Let P be an s-t path with signature (ec , ef).

s tec ef

ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Path Patching

• Let P be an s-t path with signature (ec , ef).

s tef ec′

Def: Let patch(P) be the walk obtained from P by replacing the ec -ef
subpath with a max gain ec -ef path of signature (ec , ef).

Patching Lemma:

1 patch(P) dominates P.

2 The signature of patch(P) is either (ec , ef) or (e
′
c , ef), where e′c

comes after ef .

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

Dominating Paths by Walks

• For an s-t path P, let W1,W2, . . . ,Wk be the sequence of walks
obtained by repeatedly patching until the signature stops changing, i.e.

W1 = patch(P) Wi = patch(Wi−1) ∀i ≥ 2.

• By patching lemma, Wk dominates P and k ≤ n.

s tec ef

n-recurrent s-ec walk:
every arc is used
at most n times

max gain ec -ef path

with signature (ec , ef)

ef -t path

The Dominating Set of Walks W

• For every signature (ec , ef),

1 Start with a max gain ec -ef path with signature (ec , ef).

2 Append a max gain n-recurrent s-ec walk which preserves signature.

3 Append a max gain ef -t path which preserves signature.

s tec ef

• Analogous construction for the case where ec comes after ef .

• |W| = O(m2).

The Dominating Set of Walks W

• For every signature (ec , ef),

1 Start with a max gain ec -ef path with signature (ec , ef).

2 Append a max gain n-recurrent s-ec walk which preserves signature.

3 Append a max gain ef -t path which preserves signature.

s t

ec ef

• Analogous construction for the case where ec comes after ef .

• |W| = O(m2).

The Dominating Set of Walks W

• For every signature (ec , ef),

1 Start with a max gain ec -ef path with signature (ec , ef).

2 Append a max gain n-recurrent s-ec walk which preserves signature.

3 Append a max gain ef -t path which preserves signature.

s

t

ec ef

• Analogous construction for the case where ec comes after ef .

• |W| = O(m2).

The Dominating Set of Walks W

• For every signature (ec , ef),

1 Start with a max gain ec -ef path with signature (ec , ef).

2 Append a max gain n-recurrent s-ec walk which preserves signature.

3 Append a max gain ef -t path which preserves signature.

s tec ef

• Analogous construction for the case where ec comes after ef .

• |W| = O(m2).

The Dominating Set of Walks W

• For every signature (ec , ef),

1 Start with a max gain ec -ef path with signature (ec , ef).

2 Append a max gain n-recurrent s-ec walk which preserves signature.

3 Append a max gain ef -t path which preserves signature.

s tec ef

• Analogous construction for the case where ec comes after ef .

• |W| = O(m2).

The Dominating Set of Walks W

• For every signature (ec , ef),

1 Start with a max gain ec -ef path with signature (ec , ef).

2 Append a max gain n-recurrent s-ec walk which preserves signature.

3 Append a max gain ef -t path which preserves signature.

s tec ef

• Analogous construction for the case where ec comes after ef .

• |W| = O(m2).

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

Conclusion

• SLC of minimum cost generalized flow is poly(m, n).

• Strongly polynomial algorithm for LPs with ≤ 2 variables per inequality.

• [Allamigeon, Benchimol, Gaubert, Joswig ’18] There exist LPs with

SLCθ(x
mcp
i) = 2Ω(m).

• Future directions:

▶ Develop a theory of SLC for LPs.

▶ Undiscounted MDP: strongly polynomial solvability/straight line
complexity open.

▶ Faster strongly polynomial algorithm for minimum cost generalized
flow.

Thank you!

