Agreement tasks in synchronous fault-prone networks **STACS 2025**

Pierre Fraigniaud^{*}, **Minh-Hang Nguyen^{*}**, Ami Paz[†]

★ IRIF, CNRS and Université Paris Cité, France † LISN, CNRS and Université Paris-Saclay, France

The European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska -Curie grant No 945332.

Consensus

Input: every process has an input in $\{0,1\}$

Output:

Input: every process has an input in $\{0,1\}$

Consensus

1 1 1 1 1

Synchronous message-passing Network

Every round, every process

Sends messages to its neighbours.

Receives messages from its neighbours.

Synchronous crash-prone message-passing Network

Synchronous crash-prone message-passing Network

Oblivious Algorithms:

After *r* rounds, every process knows a part of the global input (view) Decision: { $(p_i, inp_{p_i}), (p_j, inp_{p_j}), \dots$ } \mapsto output

Synchronous crash-prone message-passing Network

Oblivious Algorithms:

After *r* rounds, every process knows a part of the global input (view) Decision: { $(p_i, inp_{p_i}), (p_j, inp_{p_j}), \dots$ } \mapsto output

How many rounds do we need to solve consensus?

Agreement tasks in crash-prone Network

From cliques to general graphs

	Clique	General
Consensus	(<i>t</i> + 1) [1,2]	UB: <i>rad</i> (<i>G</i> , LB: <i>rad</i> (<i>G</i> ,

Theorem: For every graph G and every $t < \kappa(G)$, consensus in G cannot be solved in less than rad(G, t) rounds by an oblivious algorithm in the t-resilient model.

[1]*Dolev*, *Strong*'83

[2]*Aguilera*, *Toueg*'99

[3] Castaneda, Fraigniaud, Paz, Rajsbaum, Roy, Travers'23

[4]*Fraigniaud*, *N*., *Paz*, '25

Agreement tasks in crash-prone Network

From cliques to general graphs

	Clique	General
Consensus	(<i>t</i> + 1) [1,2]	UB: <i>rad</i> (<i>G</i> , LB: <i>rad</i> (<i>G</i> ,

New graph parameter: Radius under failures

Failure Patterns φ_i : Which nodes crash, when and how they crash.

Eccentricity $ecc(v, \varphi)$: Broadcast time of v under φ .

	φ_1	$arphi_j$	$arphi_{\ell}$
v_1		broadcast time	
Vi		$ecc(v_i, \varphi_j)$	
v _n	25	∞	10

graph

[3] t)[4] t)

Theorem: For every graph G and every $t < \kappa(G)$, consensus in G cannot be solved in less than rad(G, t) rounds by an oblivious algorithm in the *t*-resilient model.

Config($G, \varphi_{\emptyset}, 1$)

Config(G, φ, r): Local states of processes under φ after r rounds

Config(G, φ, r): Local states of processes under φ after r ounds

G : A fix graph

 Φ : Set of failure patterns $\varphi, \varphi' \in \Phi$

Information flow graph $IF(G, r, \Phi)$

G : A fix graph

 Φ : Set of failure patterns $\varphi, \varphi' \in \Phi$

Information flow graph $IF(G, r, \Phi)$

G : A fix graph

 Φ : Set of failure patterns $\varphi, \varphi' \in \Phi$

Config(G, φ, r) Config(G, φ', r)

Given G and Φ , there is an oblivious algorithm solving consensus in **r** rounds iff every connected component C of $IF(G, r, \Phi)$ has a dominating node v.

Information flow graph $IF(G, r, \Phi)$

Castaneda, Fraigniaud, Paz, Rajsbaum, Roy, Travers'19

$R < rad(G, t) \rightarrow \exists \varphi, ecc(v, \varphi) > R$

A well chosen φ_v

No oblivious algorithm solving consensus in R rounds

There is a node can not distinguish φ_i , φ_{i+1} .

Successor of a failure pattern

 φ_2

 φ_1

- Node u crashing last in φ .
- φ' is identical to φ but node u sends message to one more correct node w in φ' before crashing.
- There is a node with the same view in φ, φ' .

Outline of the proof

Theorem: For every graph G and every $t < \kappa(G)$, consensus in G cannot be solved in less than rad(G, t) rounds by an oblivious algorithm in the *t*-resilient model.

$$\varphi_v$$
: v can not broadcast in φ_v in R rounds.
 $\varphi_{i+1} = succ(\varphi_i)$: There is a node can not distinguish φ_i, φ_{i+1} .

 v_i does not dominate φ_{v_i}

Component *C* contains φ_{\emptyset} , φ_{v_1} , ..., φ_{v_n} . There is no node dominating *C*.

Conclusion

Beyond the connectivity threshold: arbitrary t.

Local consensus: Consensus in each connected component of G after removing crashing nodes.

Conclusion

Beyond the connectivity threshold: Arbitrary *t*.

Local consensus: Consensus in each connected component of G after removing crashing nodes.

	Clique	General graph
Consensus	(<i>t</i> + 1) [1,2]	UB: $rad(G, t)$ [3] LB: $rad(G, t)$ [4]
K-set agreement	$\lfloor \frac{t}{k} \rfloor + 1 [5]$	Open

Q: Can we do better with non-oblivious consensus algorithms?

Q: *k*-set agreement in general graph?

[1]*Dolev*, *Strong*'83 [2]*Aguilera*, *Toueg*'99 [3] Castaneda, Fraigniaud, Paz, Rajsbaum, Roy, Travers'23 [4]*Fraigniaud*, *N*., *Paz*, '24 [5] Chaudhuri, Herlihy, Lynch, Tuttle, '00

Thank you!

