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Consensus

p2 pn

1 001 0 1 0 1

Output:

Input:  every process has an input in {0,1}

Agreement: globally, processes decide on the same value

Validity: decide on a value appearing in the inputs
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Round 1

Synchronous message-passing Network

Messages are sent 

Every round, every process 

Sends messages to its neighbours.


Receives messages from its neighbours.



Crashing node

Messages are sent 

Messages are not sent

Synchronous crash-prone message-passing Network

Round r1
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Oblivious Algorithms:

How many rounds do we need 
to solve consensus? 

Synchronous crash-prone message-passing Network

Decision: { , , … }  output(pi, inppi
) (pj, inppj

) ↦
After  rounds, every process knows a part of the global input (view)r
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From cliques to general graphs

Best node Worst failure pattern 
for v
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{ecc(v, φ)}
broadcast time
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Failure Patterns  : Which nodes crash, when and how they crash.φj

Eccentricity  : Broadcast time of  under .ecc(v, φ) v φ

φℓφjφ1
v1

vi
vn ∞

ecc(vi, φj)

New graph parameter: Radius under failures

Agreement tasks in crash-prone Network
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Radius under failures
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ecc(v, φ) = t + 1

Radius under failures

rad(G, t) = t + 1
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Main tool: Information flow graph
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Config( )G, φ∅,1



v, view(v, r, φ)

Config( ) G, φ, r

= v, view(v, r, φ′ )

Config( ) G, φ′ , r

 : Set of failure patterns  Φ : A fix graph  G Information flow graph    IF(G, r, Φ)
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v, view(v, r, φ)

Config( ) G, φ, r

= v, view(v, r, φ′ )

Config( ) G, φ′ , r

 : Set of failure patterns  Φ : A fix graph  G Information flow graph    IF(G, r, Φ)

Main tool: Information flow graph
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   φ, φ′ ∈ Φ
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Given  and , there is an oblivious algorithm solving consensus in r rounds iff every 
connected component  of  has a dominating node .

G Φ
C IF(G, r, Φ) v

v, view(v, r, φ)

Config( ) G, φ, r

= v, view(v, r, φ′ )

Config( ) G, φ′ , r
view(u, r, φ) ∋ v

u, view(u, r, φ)

 : Set of failure patterns  Φ : A fix graph  G Information flow graph    IF(G, r, Φ)

Main tool: Information flow graph
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Outline of the proof

No node dominating 
component CA well chosen φv
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Outline of the proof

No node dominating 
component CA well chosen φv

,  are in the 
same component C

φv φ∅

Build a sequence of 
failure patterns

R < rad(G, t) → ∃φ, ecc(v, φ) > R

No oblivious algorithm solving 
consensus in  roundsR

φv φØφ2 φ3 …

There is a node can not distinguish , .φi φi+1

LB:  rad(G, t) φ∅

C

   IF(G, R, Φall)



Successor of a failure pattern

u

w

u

w

φ φ′ = successor(φ)

φ1 φ2 φ3 φ4 φ∅

…

u

• Node  crashing last in .


•  is identical to  but node  sends message to 
one more correct node  in  before crashing.


• There is a node with the same view in .

u φ

φ′ φ u
w φ′ 

φ, φ′ 



Theorem: For every graph G and every , consensus in G cannot be solved in less than  rounds 
by an oblivious algorithm in the -resilient model. 

t < κ(G) rad(G, t)
t

φv φØφ2 φ3 …

, IF(G, R, Φall) R < rad(G, t)

 : There is a node can not distinguish .φi+1 = succ(φi) φi, φi+1

 :  can not broadcast in  in  rounds.φv v φv R

φ∅

φv1

φvn

φvi

There is no node dominating .CC

Component  contains , .C φ∅ φv1
, …, φvn

 does not dominate vi φvi

Outline of the proof



Conclusion

Beyond the connectivity threshold: arbitrary .t

Local consensus: Consensus in each connected component of  after removing crashing nodes.G



Conclusion

Thank you!

Clique General graph

Consensus

K-set agreement Open

(t + 1) [1,2]

⌊
t
k

⌋ + 1 [5]

UB: rad(G, t) [3]

LB: rad(G, t) [4]

Q: Can we do better with non-oblivious consensus algorithms? 

Q: k-set agreement in general graph?
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Beyond the connectivity threshold: Arbitrary .t

Local consensus: Consensus in each connected component of  after removing crashing nodes.G


