ALGEBRAS FOR AUTOMATA: REASONING WITH REGULARITY

Anupam Das

University of Birmingham

42nd International Symposium on Theoretical Aspects of Computer Science Jena, Germany 6th March 2025

Based on joint work [DD24b, DD24c] with Abhishek De.

Outline

1 Systems for regular expressions

2 Inlining fixed points: algebras for automata

3 Cyclic proofs and completeness

4 Up to ω : reasoning about parity automata

5 Conclusions and further directions

Regular expressions over \mathcal{A} :

$$e, f, \ldots$$
 ::= 0 | 1 | $a \in \mathcal{A}$ | $e + f$ | ef | e^*

Write $\mathcal{L}(e) \subseteq \mathcal{A}^*$ for the regular language computed by *e*.

Regular expressions over $\mathcal{A} {:}$

 e, f, \ldots ::= 0 | 1 | $a \in \mathcal{A}$ | e + f | ef | e^*

Write $\mathcal{L}(e) \subseteq \mathcal{A}^*$ for the regular language computed by *e*.

Definition (Kleene Algebra)

A Kleene Algebra (KA) is an idempotent semiring equipped with an operation * s.t.:

$$\begin{array}{c|c} e^{*} = 1 + ee^{*} \\ ef \leqslant f \implies e^{*}f \leqslant f \end{array} \qquad e^{*} = 1 + e^{*}e \\ ef \leqslant f \implies e^{*}f \leqslant f \end{array}$$

$$(e \leqslant f := e + f = f)$$

 $(e \leq f :=$

Regular expressions over \mathcal{A} :

 e, f, \ldots ::= 0 | 1 | $a \in \mathcal{A}$ | e + f | ef | e^*

Write $\mathcal{L}(e) \subseteq \mathcal{A}^*$ for the regular language computed by *e*.

Definition (Kleene Algebra)

A Kleene Algebra (KA) is an idempotent semiring equipped with an operation * s.t.:

$$e^* = 1 + ee^*$$

$$ef \leq f \implies e^*f \leq f$$

$$ef \leq e \implies ef^* \leq f$$

$$ef \leq e \implies ef^* \leq f$$

A **left-handed Kleene Algebra** (ℓ KA) is defined like KA but without second column.

NB: in a ℓ KA we have $e^* = LFP[X \mapsto 1 + eX]$.

Examples

The image of \mathcal{L} (i.e. the regular languages) forms a KA.

EXAMPLES

The image of \mathcal{L} (i.e. the regular languages) forms a KA. The following are also KAs:

Algebra Lang of languages

The set of languages $\mathcal{P}(\mathcal{A}^*)$ where:

- 0 is \varnothing and 1 is $\{\varepsilon\}$.
- + is union and \cdot is concatenation.
- * is the usual Kleene * of a language.

Algebra **Rel** of relations

The set of binary relations $\mathcal{P}(\mathcal{A} \times \mathcal{A})$ where:

- 0 is Ø and 1 is Id.
- + is union and \cdot is composition.
- * is reflexive transitive closure.

EXAMPLES

The image of \mathcal{L} (i.e. the regular languages) forms a KA. The following are also KAs:

Algebra Lang of languages

The set of languages $\mathcal{P}(\mathcal{A}^*)$ where:

- 0 is \varnothing and 1 is $\{\varepsilon\}$.
- + is union and \cdot is concatenation.
- * is the usual Kleene * of a language.

Algebra **Rel** of relations

The set of binary relations $\mathcal{P}(\mathcal{A} \times \mathcal{A})$ where:

- 0 is Ø and 1 is Id.
- + is union and \cdot is composition.
- * is reflexive transitive closure.

Proposition (Folklore)

Lang, **Rel** and \mathcal{L} have the same equational theory.

Theorem ([Koz94, Kro90]) $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \mathsf{KA} \models e = f$

Theorem ([Koz94, Kro90])

 $\mathcal{L}(\textit{e}) \subseteq \mathcal{L}(f) \implies \mathsf{KA} \vDash \textit{e} = f$

- A celebrated but nontrivial result: Krob's proof is 137 pages!
- A crucial tool: ℓ KA can solve 'right-linear systems' of (in)equations.

Theorem ([Koz94, Kro90])

 $\mathcal{L}(\textit{e}) \subseteq \mathcal{L}(f) \implies \mathsf{KA} \models \textit{e} = f$

- A celebrated but nontrivial result: Krob's proof is 137 pages!
- A crucial tool: ℓ KA can solve 'right-linear systems' of (in)equations.

NB: this means the equational theory of **Rel** is decidable.

→ reasoning about *imperative programs*.

Theorem ([Koz94, Kro90])

 $\mathcal{L}(\textit{e}) \subseteq \mathcal{L}(f) \implies \mathsf{KA} \models \textit{e} = f$

- A celebrated but nontrivial result: Krob's proof is 137 pages!
- A crucial tool: ℓ KA can solve 'right-linear systems' of (in)equations.

NB: this means the equational theory of **Rel** is decidable.

→ reasoning about *imperative programs*.

In fact, via Krob's argument, we can obtain a stronger result:

Theorem (Left-handed completeness [Bof95])

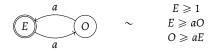
 $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \ell \mathsf{K} \mathsf{A} \models e = f.$

Alternative (and shorter!) proofs are now known, [KS12, DDP18].

DIGGING DEEPER: NFAS AS RIGHT-LINEAR SYSTEMS

DIGGING DEEPER: NFAs as right-linear systems

An NFA can be construed as a (right-linear) system of inequalities. E.g.:



NB: $\begin{array}{l} \mathcal{L}(E) = \{a^{2n}\}_n \\ \mathcal{L}(O) = \{a^{2n+1}\}_n \end{array}$ are the least solutions in \mathcal{L} .

DIGGING DEEPER: NFAs as right-linear systems

An NFA can be construed as a (right-linear) system of inequalities. E.g.:

NB: $\begin{array}{l} \mathcal{L}(E) = \{a^{2n}\}_n \\ \mathcal{L}(O) = \{a^{2n+1}\}_n \end{array}$ are the least solutions in \mathcal{L} .

Formalised Kleene Theorem

Every right-linear system has *least solutions* in any ℓKA .

DIGGING DEEPER: NFAs as right-linear systems

An NFA can be construed as a (right-linear) system of inequalities. E.g.:

NB: $\begin{array}{l} \mathcal{L}(E) = \{a^{2n}\}_n \\ \mathcal{L}(O) = \{a^{2n+1}\}_n \end{array}$ are the least solutions in \mathcal{L} .

Formalised Kleene Theorem

Every right-linear system has *least solutions* in any ℓKA .

Motto: ℓ KAs are *just* idempotent semirings with least solutions to NFAs.

Question

Can we accommodate NFAs natively within syntax?

A GLIMPSE OF PROOF SYSTEMS

A glimpse of proof systems

The theory of idempotent semirings admits a natural proof calculus. **Sequents:** $\Gamma \rightarrow e$, where Γ is a list of regular expressions (read $\prod \Gamma \leq e$) **Rules:** Lambek calculus (equivalently, non-commutative IMALL)

A GLIMPSE OF PROOF SYSTEMS

The theory of idempotent semirings admits a natural proof calculus.

Sequents: $\Gamma \rightarrow e$, where Γ is a list of regular expressions (read $\prod \Gamma \leq e$) Rules: Lambek calculus (equivalently, non-commutative IMALL)

Possibilities for * [Jip04] <u>Induction rule</u>: $\frac{\Gamma \rightarrow f \quad e, f \rightarrow f}{e^*, \Gamma \rightarrow f}$ Not complete without cut [Pal07] $\underline{\omega}$ -rule: $\frac{\Gamma \rightarrow f \quad e, \Gamma \rightarrow f \quad e, e, \Gamma \rightarrow f \quad \cdots}{e^*, \Gamma \rightarrow f}$ Proofs are necessarily infinite [DP17] <u>'Cyclic proofs' with unfoldings</u>: $\frac{\Gamma \rightarrow f \quad e, e^*, \Gamma \rightarrow f}{e^*, \Gamma \rightarrow f}$. Not regular complete without cut

The only finitary approach we have is via complex 'hypersequents', $\Gamma \to S$ where now S is a set of lists (read $\prod \Gamma \leq \sum_{\Delta \in S} \prod \Delta$)

Theorem ([DP17])

There is a hypersequential calculus HKA regularly complete for \mathcal{L} . (without cut)

The only finitary approach we have is via complex 'hypersequents', $\Gamma \to S$ where now S is a set of lists (read $\prod \Gamma \leq \sum_{\Delta \in S} \prod \Delta$)

Theorem ([DP17])

There is a hypersequential calculus HKA regularly complete for \mathcal{L} . (without cut)

This can be extended to ω -regular languages too!

Definition $A \subseteq \mathcal{A}^{\omega}$ is ω -regular if $A = \bigcup_{i < n} B_i G_i^{\omega}$, where all $B_i, C_i \subseteq \mathcal{A}^+$ are regular. The only finitary approach we have is via complex 'hypersequents', $\Gamma \to S$ where now S is a set of lists (read $\prod \Gamma \leq \sum_{\Delta \in S} \prod \Delta$)

Theorem ([DP17])

There is a hypersequential calculus HKA regularly complete for \mathcal{L} . (without cut)

This can be extended to ω -regular languages too!

Definition $A \subseteq \mathcal{A}^{\omega}$ is ω -regular if $A = \bigcup_{i < n} B_i C_i^{\omega}$, where all $B_i, C_i \subseteq \mathcal{A}^+$ are regular.

Theorem ([HK22])

There is an extension of HKA regularly complete for ω -regular inclusions. (without cut)

1 Systems for regular expressions

2 Inlining fixed points: algebras for automata

3 Cyclic proofs and completeness

4 Up to ω : reasoning about parity automata

5 Conclusions and further directions

$\mu\text{-}\mathrm{expressions}$: a notation for NFAs

(**Right-linear**) μ -expressions, e, f, ..., are generated by:

 $e,f,\ldots \quad ::= \quad \mathsf{O} \quad | \quad 1 \quad | \quad X \quad | \quad ae \quad | \quad e+f \quad | \quad \mu Xe$

NB: there is no native product.

$\mu\text{-}\mathrm{expressions}$: a notation for NFAs

(**Right-linear**) μ -expressions, e, f, ..., are generated by:

 e, f, \dots ::= 0 | 1 | X | ae | e+f | μXe

NB: there is no native product.

Language semantics:

- $\mathcal{L}(\mu Xe(X)) := LFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

$\mu\text{-}\mathrm{expressions}$: a notation for NFAs

(**Right-linear**) μ -expressions, e, f, ..., are generated by:

 e, f, \dots ::= 0 | 1 | X | ae | e+f | μXe

NB: there is no native product.

Language semantics:

- $\mathcal{L}(\mu Xe(X)) := LFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

 μ -expressions are a notation for NFAs:

- Expressions give rise to a canonical NFA.
- Right-linear systems can be solved by expressions via Bekić's Lemma.

(Right-linear) μ -expressions, e, f, ..., are generated by:

 $e,f,\ldots \quad ::= \quad \mathsf{O} \quad | \quad 1 \quad | \quad X \quad | \quad ae \quad | \quad e+f \quad | \quad \mu \mathsf{X}e$

NB: there is no native product.

Language semantics:

- $\mathcal{L}(\mu Xe(X)) := LFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

 μ -expressions are a notation for NFAs:

- Expressions give rise to a canonical NFA.
- Right-linear systems can be solved by expressions via Bekić's Lemma.

Example

We can solve the previous systems for E, O in two (equivalent) ways:

$$E = \mu X(1 + aaX) \qquad O = \mu X(a + aaX)$$
$$O = aE \qquad E = 1 + aO$$

Right-linear expressions admit a natural algebraic theory analogous to ℓKA :

Definition

A right-linear algebra (RLA) is a structure $\mathfrak{L} = (L, 0, 1, +, A)$ where:

- (L, 0, +) is a bounded join-semilattice.
- Each $a \in A$ is a bounded semilattice homomorphism.
- Each right-linear system has unique least solutions.

NB: no axioms for 1.

Right-linear expressions admit a natural algebraic theory analogous to ℓKA :

Definition

A right-linear algebra (RLA) is a structure $\mathfrak{L} = (L, 0, 1, +, A)$ where:

- (L, 0, +) is a bounded join-semilattice.
- Each $a \in A$ is a bounded semilattice homomorphism.
- Each right-linear system has unique least solutions.

NB: no axioms for 1.

Motto: RLAs are *just* join-semilattices with least solutions to NFAs.

Right-linear expressions admit a natural algebraic theory analogous to ℓ KA:

Definition

A **right-linear algebra (RLA)** is a structure $\mathfrak{L} = (L, 0, 1, +, A)$ where:

- (L, 0, +) is a bounded join-semilattice.
- Each $a \in A$ is a bounded semilattice homomorphism.
- Each right-linear system has unique least solutions.

NB: no axioms for 1.

Motto: RLAs are just join-semilattices with least solutions to NFAs.

Example

Each ℓ KA is a RLA, but not vice-versa!

- The structures **Lang** and **Rel** form RLAs in the expected way.
- $\mathcal{P}(\mathcal{A}^{\omega})$ forms an RLA in the expected way, but not a ℓ KA.

1 Systems for regular expressions

2 Inlining fixed points: algebras for automata

3 Cyclic proofs and completeness

4 Up to ω : reasoning about parity automata

5 Conclusions and further directions

The absence of native products simplifies the resulting proof systems: **Sequents:** $e \to \Gamma$, where Γ is a set of expressions (read $e \leq \sum \Gamma$)

The absence of native products simplifies the resulting proof systems: **Sequents:** $e \to \Gamma$, where Γ is a set of expressions (read $e \leq \sum \Gamma$) Non-logical rules:

$$\operatorname{id} \frac{}{e \to e} \qquad k_a \frac{e \to \Gamma}{ae \to a\Gamma} \qquad \operatorname{wk} \frac{e \to \Gamma}{e \to \Gamma, f}$$

Left logical rules:

$$\frac{e \to \Gamma}{0 \to \Gamma} \qquad +\frac{e \to \Gamma}{e + f \to \Gamma} \qquad \frac{e(\mu X e(X)) \to \Gamma}{\mu e(X) \to \Gamma}$$

Right logical rules:

$$\circ^{-r} \frac{e \to \Gamma}{e \to \Gamma, 0} \qquad +^{-r} \frac{e \to \Gamma, f_i}{e \to \Gamma, f_0 + f_1} \qquad \mu^{-r} \frac{e \to \Gamma, f(\mu X f(X))}{e \to \Gamma, \mu X f(X)}$$

The absence of native products simplifies the resulting proof systems: **Sequents:** $e \to \Gamma$, where Γ is a set of expressions (read $e \leq \sum \Gamma$) Non-logical rules:

$$\operatorname{id} \frac{}{e \to e} \qquad k_a \frac{e \to \Gamma}{ae \to a\Gamma} \qquad \operatorname{wk} \frac{e \to \Gamma}{e \to \Gamma, f}$$

Left logical rules:

$$\frac{e^{-1}}{0 \to \Gamma} \qquad +\frac{e^{-1}}{e+f \to \Gamma} \qquad \frac{e^{-1}}{\mu^{-1}} \frac{e(\mu Xe(X)) \to \Gamma}{\mu Xe(X) \to \Gamma}$$

Right logical rules:

$$\circ -r \frac{e \to \Gamma}{e \to \Gamma, 0} \qquad + -r \frac{e \to \Gamma, f_i}{e \to \Gamma, f_0 + f_1} \qquad \mu -r \frac{e \to \Gamma, f(\mu X f(X))}{e \to \Gamma, \mu X f(X)}$$

NB: the fixed point rules do *not* guarantee leastness of μ ...

... ENTER CYCLIC PROOFS

Definition

- **Preproofs** are generated coinductively from the inference rules.
- A preproof is **cyclic/regular** if it has only finitely many distinct sub-preproofs.
- A **proof** is a preproof where each infinite branch has a 'good formula trace'.

Write CRLA for the class of cyclic \widehat{RLA} proofs.

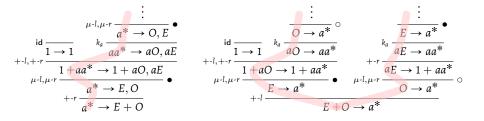
... ENTER CYCLIC PROOFS

Definition

- Preproofs are generated coinductively from the inference rules.
- A preproof is **cyclic/regular** if it has only finitely many distinct sub-preproofs.
- A **proof** is a preproof where each infinite branch has a 'good formula trace'. Write CRLA for the class of cyclic RLA proofs.

Example

Write $a^* := \mu X(1 + aX)$. We can show $a^* = E + O$:



Some metalogical results

Theorem (Soundness) $CRLA \vdash e \rightarrow f \implies \mathcal{L}(e) \subseteq \mathcal{L}(f).$

Proof idea.

- For each $w \in \mathcal{L}(e)$ we take its finite 'run' along a cyclic proof.
- By induction on the run we show $w \in \mathcal{L}(f)$.

Theorem (Soundness) $CRLA \vdash e \rightarrow f \implies \mathcal{L}(e) \subseteq \mathcal{L}(f).$

Proof idea.

- For each $w \in \mathcal{L}(e)$ we take its finite 'run' along a cyclic proof.
- By induction on the run we show $w \in \mathcal{L}(f)$.

Theorem (Regular completeness)

 $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \mathsf{CRLA} \vdash e \to f.$

Proof idea.

- Define a bottom-up validity-preserving proof search strategy.
- Critical loop-check for weakenings.
- analyticity ~> finite state proof search ~> regularity.

Theorem (Soundness) $CRLA \vdash e \rightarrow f \implies \mathcal{L}(e) \subseteq \mathcal{L}(f).$

Proof idea.

- For each $w \in \mathcal{L}(e)$ we take its finite 'run' along a cyclic proof.
- By induction on the run we show $w \in \mathcal{L}(f)$.

Theorem (Regular completeness)

 $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \mathsf{CRLA} \vdash e \rightarrow f.$

Proof idea.

- Define a bottom-up validity-preserving proof search strategy.
- Critical loop-check for weakenings.
- analyticity \rightsquigarrow finite state proof search \rightsquigarrow regularity.

NB: This gives us an effective algorithm for proof search.

Recovering algebraic completeness for ${\cal L}$

We can extract inductive invariants from cyclic proofs:

Theorem $CRLA \vdash e \rightarrow f \implies RLA \vdash e \leq f.$

We can extract inductive invariants from cyclic proofs:

Theorem $CRLA \vdash e \rightarrow f \implies RLA \vdash e \leq f.$

Proof idea.

- Inspired by previous approaches for ℓ KA [KS12, DDP18].
- Can compute intersections of languages via right-linear systems. ~ a product construction on NFAs.
- Appropriate local properties by analysis of cyclic proofs.

We can extract inductive invariants from cyclic proofs:

Theorem $CRLA \vdash e \rightarrow f \implies RLA \vdash e \leq f.$

Proof idea.

- Inspired by previous approaches for *l*KA [KS12, DDP18].
- Can compute intersections of languages via right-linear systems. → a product construction on NFAs.
- Appropriate local properties by analysis of cyclic proofs.

Corollary (Algebraic completeness) $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \mathsf{RLA} \models e \leqslant f.$

1 Systems for regular expressions

2 Inlining fixed points: algebras for automata

3 Cyclic proofs and completeness

4 Up to ω : reasoning about parity automata

5 Conclusions and further directions

We can reason about ω -regular languages via greatest fixed points:

 e, f, \dots ::= 0 | X | ae | e+f | μXe | νXe

NB: we omit 1 to limit to strictly infinite words, for simplicity.

We can reason about ω -regular languages via greatest fixed points:

 e, f, \dots ::= 0 | X | ae | e+f | μXe | νXe

NB: we omit 1 to limit to strictly infinite words, for simplicity.

Language semantics:

- $\mathcal{L}(\nu Xe(X)) := GFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

We can reason about ω -regular languages via greatest fixed points:

 e, f, \dots ::= 0 | X | ae | e+f | μXe | νXe

NB: we omit 1 to limit to strictly infinite words, for simplicity.

Language semantics:

- $\mathcal{L}(\nu Xe(X)) := GFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

 $\mu\nu$ -expressions are a notation for parity automata (NDPA).

We can reason about ω -regular languages via greatest fixed points:

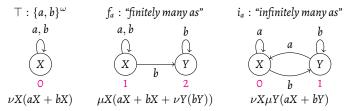
 e, f, \dots ::= 0 | X | ae | e+f | μXe | νXe

NB: we omit 1 to limit to strictly infinite words, for simplicity.

Language semantics:

- $\mathcal{L}(\nu Xe(X)) := GFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

 $\mu\nu$ -expressions are a notation for parity automata (NDPA). E.g.:



INFINITE WORDS VIA GREATEST FIXED POINTS

We can reason about ω -regular languages via greatest fixed points:

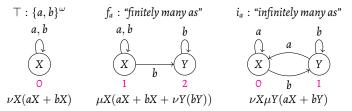
 e, f, \dots ::= 0 | X | ae | e+f | μXe | νXe

NB: we omit 1 to limit to strictly infinite words, for simplicity.

Language semantics:

- $\mathcal{L}(\nu Xe(X)) := GFP[A \mapsto \mathcal{L}(e(A))]$
- Knaster-Tarski Theorem $\implies \mathcal{L}(e)$ is well-defined.

 $\mu\nu$ -expressions are a notation for parity automata (NDPA). E.g.:



NB: equivalence between an expression and associated NDPA is not immediate...

Positions: pairs (w, e) where $w \in A^{\omega}$ and e an expression.

Position	Available moves
(aw, ae)	(w, e)
(w, e+f)	(w, e), (w, f)
$(w, \mu Xe(X))$	$(w, e(\mu X e(X)))$
$(w, \nu Xe(X))$	$(w, e(\nu X e(X)))$

Winning: smallest expression occurring infinitely often is a *v*-expression.

Positions: pairs (w, e) where $w \in A^{\omega}$ and e an expression.

Position	Available moves
(aw, ae)	(w, e)
(w, e+f)	(w, e), (w, f)
$(w, \mu Xe(X))$	$(w, e(\mu X e(X)))$
$(w, \nu Xe(X))$	$(w, e(\nu X e(X)))$

Winning: smallest expression occurring infinitely often is a ν -expression.

Theorem (Adequacy)

 $w \in \mathcal{L}(e) \iff$ there is a winning play from (w, e).

Proof idea.

- *Approximate* (non-)membership by ordinals ('signatures', cf. [SE89]).
- 'Least' signatures induce/exclude winning plays.

Positions: pairs (w, e) where $w \in A^{\omega}$ and e an expression.

Position	Available moves
(aw, ae)	(w, e)
(w, e+f)	(w, e), (w, f)
$(w, \mu Xe(X))$	$(w, e(\mu X e(X)))$
$(w, \nu Xe(X))$	$(w, e(\nu X e(X)))$

Winning: smallest expression occurring infinitely often is a ν -expression.

Theorem (Adequacy)

 $w \in \mathcal{L}(e) \iff$ there is a winning play from (w, e).

Proof idea.

- *Approximate* (non-)membership by ordinals ('signatures', cf. [SE89]).
- 'Least' signatures induce/exclude winning plays.

Corollary

A $\mu\nu$ -expression and its associated NDPA compute the same ω -language.

System and soundness

 $\nu {\sf CRLA}$ extends CRLA by the rules:

$$\begin{array}{c} \underset{\nu^{-l}}{\overset{e(\nu Xe(X)) \to \Gamma}{\nu Xe(X) \to \Gamma}} & \quad \underset{\nu^{-r}}{\overset{e \to \Gamma, f(\nu Xf(X))}{e \to \Gamma, \nu Xf(X)}} \end{array}$$

'Good formula traces' now given by winning plays (on RHS, or losing plays on LHS)

 $\nu {\sf CRLA}$ extends CRLA by the rules:

$$\begin{array}{c} \underset{\nu \cdot l}{\overset{e(\nu Xe(X)) \to \Gamma}{\nu Xe(X) \to \Gamma}} & \quad \underset{\nu \cdot r}{\overset{e \to \Gamma, f(\nu Xf(X))}{e \to \Gamma, \nu Xf(X)}} \end{array}$$

'Good formula traces' now given by winning plays (on RHS, or losing plays on LHS)

Theorem (Soundness)

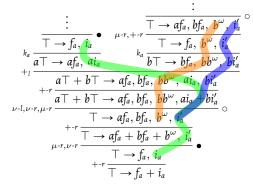
$$\nu$$
CRLA $\vdash e \rightarrow f \implies \mathcal{L}(e) \subseteq \mathcal{L}(f).$

Proof idea.

Let *P* be a ν CRLA proof of $e \rightarrow f$.

- Suppose $w \in \mathcal{L}(e)$ and let π be a winning play from (w, e).
- π determines an infinite branch B_{π} of P.
- By construction, B_{π} in turn induces a winning play from (w, f).

"Any ω -word over $\{a, b\}$ has finitely many as or infinitely many as"



Key

$$b^{\omega} := \nu Y(bY)$$

$$i'_{a} := \mu Y(ai_{a} + bY)$$

Correctness

$$-\circ^{\omega}$$
: orange trace good
 $-\bullet^{\omega}$: green trace good
 $[-\bullet-\circ)^{\omega}$: green/blue trace good

PROOF SEARCH GAME AND COMPLETENESS

PROOF SEARCH GAME AND COMPLETENESS

Construe proof search as a 2-player game between Prover and Refuter.

Construe proof search as a 2-player game between Prover and Refuter.

By ω -regularity of the correctness condition for ν CRLA:

Lemma (cf. Büchi-Landweber)

The proof search game for ν CRLA is finite memory determined.

Construe proof search as a 2-player game between Prover and Refuter.

By ω -regularity of the correctness condition for ν CRLA:

Lemma (cf. Büchi-Landweber) The proof search game for ν CRLA is finite memory determined.

Theorem (Completeness) $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \nu \text{CRLA} \vdash e \rightarrow f \text{ (for } e, f \text{ guarded)}$ Construe proof search as a 2-player game between Prover and Refuter.

By ω -regularity of the correctness condition for ν CRLA:

Lemma (cf. Büchi-Landweber) The proof search game for ν CRLA is finite memory determined.

Theorem (Completeness) $\mathcal{L}(e) \subseteq \mathcal{L}(f) \implies \nu \text{CRLA} \vdash e \rightarrow f \text{ (for } e, f \text{ guarded)}$

Proof idea.

- Similar proof search strategy to CRLA, but guardedness \implies fairness.
- ν CRLA $\parallel e \rightarrow f \implies$ there is a 'bad branch' of proof search, by determinacy.
- By reduction to Evaluation Puzzle, we extract a word $w \in \mathcal{L}(e) \setminus \mathcal{L}(f)$.

1 Systems for regular expressions

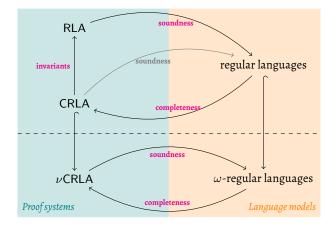
2 Inlining fixed points: algebras for automata

3 Cyclic proofs and completeness

4 Up to ω : reasoning about parity automata

5 Conclusions and further directions

SUMMARY



We can go futher and consider a fully dualised syntax:

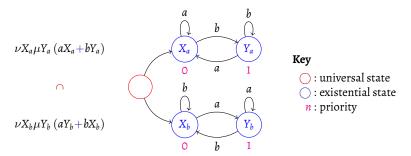
$$e, f, \dots ::= X | ae | 0 | e+f | \mu Xe \\ | \top | e \cap f | \nu Xe$$

This comprises a notation for Alternating Parity Automata (APA).

We can go futher and consider a fully dualised syntax:

$$e, f, \dots ::= X | ae | 0 | e+f | \mu Xe \\ | \top | e \cap f | \nu Xe$$

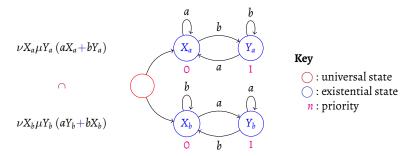
This comprises a notation for Alternating Parity Automata (APA). E.g.:



We can go futher and consider a fully dualised syntax:

$$e, f, \dots ::= X | ae | 0 | e+f | \mu Xe \\ | \top | e \cap f | \nu Xe$$

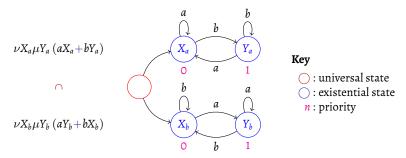
This comprises a notation for Alternating Parity Automata (APA). E.g.:



NB: the resulting theory is much more symmetric!

We can go futher and consider a fully dualised syntax:

This comprises a notation for Alternating Parity Automata (APA). E.g.:



NB: the resulting theory is much more symmetric!

Theorem

- CRLA has an extension complete for APA expressions.
- RLA has an extension complete for APA expressions. ~-> Right-Linear Lattices

BEYOND REGULARITY: CONTEXT-FREE [DD24A]

We can combine all the linguistic features we have seen so far:

 $e,f,\ldots \quad ::= \quad \mathsf{O} \quad | \quad \mathsf{I} \quad | \quad \mathsf{X} \quad | \quad a \quad | \quad e+f \quad | \quad ef \quad | \quad \mu\mathsf{X}e \quad | \quad \nu\mathsf{X}e$

Such expressions compute just the $\leq \omega$ -context-free languages.

BEYOND REGULARITY: CONTEXT-FREE [DD24A]

We can combine all the linguistic features we have seen so far:

 $e,f,\ldots \quad ::= \quad \mathsf{O} \quad | \quad \mathsf{I} \quad | \quad X \quad | \quad a \quad | \quad e+f \quad | \quad ef \quad | \quad \mu \mathsf{X}e \quad | \quad \nu \mathsf{X}e$

Such expressions compute just the $\leq \omega$ -context-free languages.

We obtain an extension $\mu\nu\ell$ HKA of HKA with:

Theorem (Assuming ∃0#)

 $\mathcal{L}(e) \subseteq \mathcal{L}(f) \iff \mu \nu \ell \mathsf{HKA} \text{ has a (not necessarily regular) proof of } e \to f.$

- Note that proofs are inherently irregular! Universality of CFLs is not r.e.
- We thus need analytic determinacy for completeness, which is beyond ZFC.

Beyond regularity: context-free [DD24A]

We can combine all the linguistic features we have seen so far:

 $e,f,\ldots \quad ::= \quad \mathsf{O} \quad | \quad 1 \quad | \quad \mathsf{X} \quad | \quad a \quad | \quad e+f \quad | \quad ef \quad | \quad \mu\mathsf{X}e \quad | \quad \nu\mathsf{X}e$

Such expressions compute just the $\leq \omega$ -context-free languages.

We obtain an extension $\mu\nu\ell$ HKA of HKA with:

Theorem (Assuming ∃0#)

 $\mathcal{L}(e) \subseteq \mathcal{L}(f) \iff \mu \nu \ell \mathsf{HKA} \text{ has a (not necessarily regular) proof of } e \to f.$

- Note that proofs are inherently irregular! Universality of CFLs is not r.e.
- We thus need analytic determinacy for completeness, which is beyond ZFC.

Corollary

Completeness for an infinitary axiomatisation of CFLs (cf. [GH13]).

Perspectives

- Equational theories of automata via fixed point notations.
- Cyclic proofs a natural and powerful technique.
- Right-linear syntax much more amenable to proof theory.
- Completeness for regular languages is independent of multiplication!

Perspectives

- Equational theories of automata via fixed point notations.
- Cyclic proofs a natural and powerful technique.
- Right-linear syntax much more amenable to proof theory.
- Completeness for regular languages is independent of multiplication!

Future directions

- Further models e.g. visibly pushdown and tree automata.
- What about computational interpretations of proofs? **NB:** beware non-constructivity!

Perspectives

- Equational theories of automata via fixed point notations.
- Cyclic proofs a natural and powerful technique.
- Right-linear syntax much more amenable to proof theory.
- Completeness for regular languages is independent of multiplication!

Future directions

- Further models e.g. visibly pushdown and tree automata.
- What about computational interpretations of proofs? **NB:** beware non-constructivity!

THANK YOU.

References I

M. Boffa.

Une condition impliquant toutes les identités rationnelles.

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, 29(6):515–518, 1995.

Anupam Das and Abhishek De.

A proof theory of (ω -)context-free languages, via non-wellfounded proofs.

In Christoph Benzmüller, Marijn J. H. Heule, and Renate A. Schmidt, editors, Automated Reasoning - 12th International Joint Conference, IJCAR 2024, Nancy, France, July 3-6, 2024, Proceedings, Part II, volume 14740 of Lecture Notes in Computer Science, pages 237–256. Springer, 2024.

Anupam Das and Abhishek De.

A proof theory of right-linear (ω -)grammars via cyclic proofs.

In Pawel Sobocinski, Ugo Dal Lago, and Javier Esparza, editors, *Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2024, Tallinn, Estonia, July* 8-11, 2024, pages 30:1–30:14. ACM, 2024.

Anupam Das and Abhishek De.

A proof theory of right-linear (omega-)grammars via cyclic proofs, 2024.

References II

Anupam Das, Amina Doumane, and Damien Pous.

Left-handed completeness for kleene algebra, via cyclic proofs.

In Gilles Barthe, Geoff Sutcliffe, and Margus Veanes, editors, LPAR-22. 22nd International Conference on Logic for Programming, Artificial Intelligence and Reasoning, volume 57 of EPiC Series in Computing, pages 271–289, Awassa, Ethiopia, 2018. EasyChair.

Anupam Das and Damien Pous.

A cut-free cyclic proof system for kleene algebra.

In Renate A. Schmidt and Cláudia Nalon, editors, Automated Reasoning with Analytic Tableaux and Related Methods - 26th International Conference, TABLEAUX 2017, Brasília, Brazil, September 25-28, 2017, Proceedings, volume 10501 of Lecture Notes in Computer Science, pages 261–277, Brazil, 2017. Springer.

Niels Bjørn Bugge Grathwohl, Fritz Henglein, and Dexter .

Infinitary axiomatization of the equational theory of context-free languages.

Electronic Proceedings in Theoretical Computer Science, 126:44–55, August 2013.

References III

Emile Hazard and Denis Kuperberg.

Cyclic proofs for transfinite expressions.

In Florin Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs, pages 23:1–23:18, Göttingen, Germany, 2022. Schloss Dagstuhl -Leibniz-Zentrum für Informatik.

Peter Jipsen.

From semirings to residuated kleene lattices.

Studia Logica, 76:291–303, 03 2004.

D. Kozen.

A completeness theorem for kleene algebras and the algebra of regular events.

Information and Computation, 110(2):366–390, 1994.

Daniel Krob.

A complete system of b-rational identities.

In Michael S. Paterson, editor, *Automata, Languages and Programming*, pages 60–73, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

References IV

Dexter Kozen and Alexandra Silva.

Left-handed completeness.

In Wolfram Kahl and Timothy G. Griffin, editors, *Relational and Algebraic Methods in Computer Science*, pages 162–178, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Ewa Palka.

An infinitary sequent system for the equational theory of *-continuous action lattices. *Fundamenta Informaticae*, 78(2):295–309, 2007.

Robert S. Streett and E. Allen Emerson.

An automata theoretic decision procedure for the propositional mu-calculus.

Inf. Comput., 81(3):249-264, 1989.