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Kleene algebras

Regular expressions overA:

e, f , . . . ::“ 0 | 1 | a P A | e ` f | ef | e˚

WriteLpeq Ď A˚
for the regular language computed by e.

Definition (Kleene Algebra)

A Kleene Algebra (KA) is an idempotent semiring equipped with an operation ˚ s.t.:

e˚ “ 1 ` ee˚ e˚ “ 1 ` e˚e
ef ď f ùñ e˚f ď f ef ď e ùñ ef ˚

ď f

(e ď f :“ e ` f “ f )

A left-handedKleene Algebra (ℓKA) is defined likeKA but without second column.

NB: in a ℓKAwe have e˚ “ LFP rX ÞÑ 1 ` eXs.
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Examples

The image ofL (i.e. the regular languages) forms aKA.

The following are alsoKAs:

Algebra Lang of languages
The set of languagesPpA˚

qwhere:

‚ 0 is∅ and 1 is tεu.

‚ ` is union and ¨ is concatenation.

‚ ˚ is the usual Kleene ˚ of a language.

Algebra Rel of relations
The set of binary relationsPpA ˆ Aqwhere:

‚ 0 is∅ and 1 is Id.

‚ ` is union and ¨ is composition.

‚ ˚ is reflexive transitive closure.

Proposition (Folklore)

Lang,Rel andL have the same equational theory.
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Completeness

Theorem ([Koz94, Kro90])

Lpeq Ď Lpf q ùñ KA ( e “ f

‚ A celebrated but nontrivial result: Krob’s proof is 137 pages!

‚ A crucial tool: ℓKA can solve ‘right-linear systems’ of (in)equations.

NB: this means the equational theory of Rel is decidable.
⇝ reasoning about imperative programs.

In fact, via Krob’s argument, we can obtain a stronger result:

Theorem (Left-handed completeness [Bof95])

Lpeq Ď Lpf q ùñ ℓKA ( e “ f .

Alternative (and shorter!) proofs are now known, [KS12, DDP18].
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Digging deeper: NFAs as right-linear systems

An NFA can be construed as a (right-linear) system of inequalities. E.g.:

E O
a

a
„

E ě 1

E ě aO
O ě aE

NB: LpEq “ ta2nun
LpOq “ ta2n`1

un
are the least solutions inL.

Formalised KleeneTheorem

Every right-linear system has least solutions in any ℓKA.

Motto: ℓKAs are just idempotent semirings with least solutions to NFAs.

Question

Canwe accommodate NFAs natively within syntax?
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A glimpse of proof systems

The theory of idempotent semirings admits a natural proof calculus.

Sequents: Γ Ñ e, where Γ is a list of regular expressions (read
ś

Γ ď e)
Rules: Lambek calculus (equivalently, non-commutative IMALL)

Possibilities for ˚

[Jip04] Induction rule:

Γ Ñ f e, f Ñ f
e˚,Γ Ñ f

Not complete without cut

[Pal07] ω-rule:
Γ Ñ f e,Γ Ñ f e, e,Γ Ñ f ¨ ¨ ¨

e˚,Γ Ñ f
Proofs are necessarily infinite

[DP17] ‘Cyclic proofs’ with unfoldings:

Γ Ñ f e, e˚,Γ Ñ f
e˚,Γ Ñ f

.

Not regular complete without cut
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State of the art: hypersequents

The only finitary approach we have is via complex ‘hypersequents’, Γ Ñ Swhere
now S is a set of lists (read

ś

Γ ď
ř

∆PS

ś

∆)

Theorem ([DP17])

There is a hypersequential calculusHKA regularly complete forL. (without cut)

This can be extended to ω-regular languages too!

Definition

A Ď Aω
is ω-regular if A “

Ť

iăn
BiCω

i , where all Bi,Ci Ď A`
are regular.

Theorem ([HK22])

There is an extension ofHKA regularly complete forω-regular inclusions. (without cut)
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µ-expressions: a notation for NFAs

(Right-linear)µ-expressions, e, f , ..., are generated by:

e, f , ... ::“ 0 | 1 | X | ae | e ` f | µXe

NB: there is no native product.

Language semantics:
‚ LpµXepXqq :“ LFP rA ÞÑ LpepAqqs

‚ Knaster-TarskiTheorem ùñ Lpeq is well-defined.

µ-expressions are a notation for NFAs:

‚ Expressions give rise to a canonical NFA.

‚ Right-linear systems can be solved by expressions via Bekić’s Lemma.

Example

We can solve the previous systems for E,O in two (equivalent) ways:

E“ µXp1 ` aaXq

O“ aE
O“ µXpa ` aaXq

E“ 1 ` a0
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Kleener algebras?

Right-linear expressions admit a natural algebraic theory analogous to ℓKA:

Definition

A right-linear algebra (RLA) is a structureL “ pL, 0, 1,`,Aqwhere:

‚ pL, 0,`q is a bounded join-semilattice.

‚ Each a P A is a bounded semilattice homomorphism.

‚ Each right-linear system has unique least solutions.

NB: no axioms for 1.

Motto: RLAs are just join-semilattices with least solutions to NFAs.

Example

Each ℓKA is aRLA, but not vice-versa!
‚ The structures Lang and Rel formRLAs in the expected way.
‚ PpAω

q forms anRLA in the expected way, but not a ℓKA.
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The system
yRLA

The absence of native products simplifies the resulting proof systems:

Sequents: e Ñ Γ, where Γ is a set of expressions (read e ď
ř

Γ)

Non-logical rules:

id
e Ñ e

e Ñ Γ
ka
ae Ñ aΓ

e Ñ Γ
wk
e Ñ Γ, f

Left logical rules:

0-l
0 Ñ Γ

e Ñ Γ f Ñ Γ
`-l

e ` f Ñ Γ

epµXepXqq Ñ Γ
µ-l

µXepXq Ñ Γ

Right logical rules:

e Ñ Γ
0-r
e Ñ Γ, 0

e Ñ Γ, fi
`-r

e Ñ Γ, f0 ` f1

e Ñ Γ, f pµXf pXqq
µ-r

e Ñ Γ, µXf pXq

NB: the fixed point rules do not guarantee leastness of µ...
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...enter cyclic proofs

Definition

‚ Preproofs are generated coinductively from the inference rules.

‚ A preproof is cyclic/regular if it has only finitely many distinct sub-preproofs.
‚ A proof is a preproof where each infinite branch has a ‘good formula trace’.

Write CRLA for the class of cycliczRLA proofs.

Example

Write a˚ :“ µXp1 ` aXq. We can show a˚
“ E ` O:

id
1 Ñ 1

.

.

.

µ-l,µ-r ‚
a˚ Ñ O, E

ka
aa˚ Ñ aO, aE

`-l,`-r
1`aa˚

Ñ 1 ` aO, aE
µ-l,µ-r ‚

a˚ Ñ E,O
`-r

a˚ Ñ E ` O

id
1 Ñ 1

.

.

.

˝
O Ñ a˚

ka aO Ñ aa˚

`-l,`-r
1`aO Ñ 1 ` aa˚

µ-l,µ-r ‚
E Ñ a˚

.

.

.

‚
E Ñ a˚

ka aE Ñ aa˚

`-r
aE Ñ 1 ` aa˚

µ-l,µ-r ˝
O Ñ a˚

`-l
E`O Ñ a˚
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Some metalogical results

Theorem (Soundness)

CRLA $ e Ñ f ùñ Lpeq Ď Lpf q.

Proof idea.

‚ For each w P Lpeqwe take its finite ‘run’ along a cyclic proof.
‚ By induction on the run we show w P Lpf q.

Theorem (Regular completeness)

Lpeq Ď Lpf q ùñ CRLA $ e Ñ f .

Proof idea.

‚ Define a bottom-up validity-preserving proof search strategy.

‚ Critical loop-check for weakenings.

‚ analyticity⇝ finite state proof search⇝ regularity.

NB:This gives us an effective algorithm for proof search.
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Recovering algebraic completeness forL

We can extract inductive invariants from cyclic proofs:

Theorem

CRLA $ e Ñ f ùñ RLA $ e ď f .

Proof idea.

‚ Inspired by previous approaches for ℓKA [KS12, DDP18].
‚ Can compute intersections of languages via right-linear systems.

⇝ a product construction on NFAs.

‚ Appropriate local properties by analysis of cyclic proofs.

Corollary (Algebraic completeness)

Lpeq Ď Lpf q ùñ RLA ( e ď f .
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Infinite words via greatest fixed points

We can reason about ω-regular languages via greatest fixed points:

e, f , ... ::“ 0 | X | ae | e ` f | µXe | νXe

NB:we omit 1 to limit to strictly infinite words, for simplicity.

Language semantics:
‚ LpνXepXqq :“ GFPrA ÞÑ LpepAqqs

‚ Knaster-TarskiTheorem ùñ Lpeq is well-defined.

µν-expressions are a notation for parity automata (NDPA). E.g.:

J : ta, buω fa : “finitely many as” ia : “infinitely many as”

X
0

a, b

X
1

Y
2

b

a, b b

X
0

Y
1b

a
a b

νXpaX ` bXq µXpaX ` bX ` νYpbYqq νXµYpaX ` bYq

NB: equivalence between an expression and associated NDPA is not immediate.. .
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Segue: the evaluation puzzle

Positions: pairs pw, eqwhere w P Aω
and e an expression.

Position Availablemoves
paw, aeq pw, eq

pw, e ` f q pw, eq, pw, f q
pw, µXepXqq pw, epµXepXqq

pw, νXepXqq pw, epνXepXqq

Winning: smallest expression occurring infinitely often is a ν-expression.

Theorem (Adequacy)

w P Lpeq ðñ there is a winning play from pw, eq.

Proof idea.

‚ Approximate (non-)membership by ordinals (‘signatures’, cf. [SE89]).
‚ ‘Least’ signatures induce/exclude winning plays.

Corollary

Aµν-expression and its associated NDPA compute the sameω-language.
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System and soundness

νCRLA extends CRLA by the rules:

epνXepXqq Ñ Γ
ν-l

νXepXq Ñ Γ

e Ñ Γ, f pνXf pXqq
ν-r

e Ñ Γ, νXf pXq

‘Good formula traces’ now given by winning plays (on RHS, or losing plays on LHS)

Theorem (Soundness)

νCRLA $ e Ñ f ùñ Lpeq Ď Lpf q.

Proof idea.

Let P be a νCRLA proof of e Ñ f .
‚ Suppose w P Lpeq and let π be a winning play from pw, eq.
‚ π determines an infinite branch Bπ of P.
‚ By construction, Bπ in turn induces a winning play from pw, f q.
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Example

“Any ω-word over ta, bu has finitely many as or infinitely many as”

.

.

.

‚
J Ñ fa, ia

ka
aJ Ñ afa, aia

.

.

.

˝
J Ñ afa, bfa, bω, i1a

µ-r,`-r
J Ñ fa, bω, i1a

ka
bJ Ñ bfa, bbω, bi1a

`l
aJ ` bJ Ñ afa, bfa, bbω, aia, bi1a

`-r
aJ ` bJ Ñ afa, bfa, bbω, aia `bi1a

ν-l,ν-r,µ-r ˝
J Ñ afa, bfa, bω, i1a

`-r
J Ñ afa ` bfa ` bω, i1a

µ-r,ν-r ‚
J Ñ fa, ia

`-r
J Ñ fa ` ia

Key
bω :“ νYpbYq

i1a :“ µYpaia ` bYq

Correctness
´˝

ω : orange trace good
´‚

ω : green trace good
p´ ‚ ´˝q

ω : green/blue trace good
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Proof search game and completeness

Construe proof search as a 2-player game between Prover and Refuter.

By ω-regularity of the correctness condition for νCRLA:

Lemma (cf. Büchi-Landweber)

The proof search game for νCRLA is finite memory determined.

Theorem (Completeness)

Lpeq Ď Lpf q ùñ νCRLA $ e Ñ f (for e, f guarded)

Proof idea.

‚ Similar proof search strategy to CRLA, but guardedness ùñ fairness.

‚ νCRLA $ e Ñ f ùñ there is a ‘bad branch’ of proof search, by determinacy.

‚ By reduction to Evaluation Puzzle, we extract a word w P LpeqzLpf q.
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Summary

RLA

CRLA

regular languages

νCRLA ω-regular languages

soundness

soundness

completeness

soundness

completeness

invariants

Proof systems Languagemodels
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Towards Alternating Parity Automata: Right-Linear Lattices (w.i.p.)

We can go futher and consider a fully dualised syntax:

e, f , . . . ::“ X | ae | 0 | e ` f | µX e
| J | e X f | νX e

This comprises a notation for Alternating Parity Automata (APA). E.g.:

Xa

0

Ya

1

Xb

0

Yb

1

b

a

a b

a

b

b a

νXaµYa paXa`bYaq

X

νXbµYb paYb`bXbq

Key
⃝ : universal state
⃝ : existential state
n : priority

NB: the resulting theory is muchmore symmetric!

Theorem

‚ CRLA has an extension complete for APA expressions.
‚ RLA has an extension complete for APA expressions.⇝Right-Linear Lattices
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Beyond regularity: context-free [DD24a]

We can combine all the linguistic features we have seen so far:

e, f , ... ::“ 0 | 1 | X | a | e`f | ef | µXe | νXe

Such expressions compute just theď ω-context-free languages.

We obtain an extension µνℓHKA ofHKAwith:

Theorem (Assuming D0#)

Lpeq Ď Lpf q ðñ µνℓHKA has a (not necessarily regular) proof of e Ñ f .

‚ Note that proofs are inherently irregular! Universality of CFLs is not r.e.

‚ We thus need analytic determinacy for completeness, which is beyond ZFC.

Corollary

Completeness for an infinitary axiomatisation of CFLs (cf. [GH13]).
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Reflections

Perspectives
‚ Equational theories of automata via fixed point notations.

‚ Cyclic proofs a natural and powerful technique.

‚ Right-linear syntax muchmore amenable to proof theory.

‚ Completeness for regular languages is independent of multiplication!

Future directions
‚ Further models e.g. visibly pushdown and tree automata.

‚ What about computational interpretations of proofs?

NB: beware non-constructivity!

Thank you.
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