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Problem Statement, 1st attempt

We have some agents and some environment where every location
in the environment should be visited by at least one of the agents.
The total distance for the agents should be minimal.





Solution, 1st attempt

Just compute a Minimum Spanning Forest where each tree
contains one agent.



Perhaps not the fairest solution...
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What if we care about fairness?

Minimize the maximum size of a spanning tree in the forest.

NP-hard, but there exists a 4-approximation in polynomial time.
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So what do we want?

▶ The total amount of work should be close to minimal.

▶ No agents are being treated (too) unfairly.



More Formally

▶ We are given a metric space (X , d) and agent locations
(depots) A ⊆ X .

▶ Denote by w(Y ) the total length of a minimum spanning tree
of Y ⊆ X .

▶ We want a cover X :=
⋃

a∈A Xa with a ∈ Xa such that both
maxa∈A w(Xa) and

∑
a∈A w(Xa) are approximately minimal.

Those are just the ℓ1 and ℓ∞ norms of the vector x ∈ RA with
xa = w(Xa).

If we want to minimize both simultaneously, why not try ℓ2?
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Observation
We really want to have an algorithm that (approximately)
minimizes ||x ||p.

This still misses some important objective functions, such as
top-ℓ-norms.
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We really want to have an algorithm that (approximately)
minimizes all monotone symmetric norm simultaneously.

Problem: It’s not even clear such solutions exist.
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Our Contribution

Theorem (With Depots)

For any metric space (X , d) and A ⊆ X we can compute in
polynomial time a partition (Xa)a∈A of X such that ||(w(Xa)a∈A)||
is minimal up to a universally constant factor c , for any monotone
symmetric norm || · ||.

Theorem (Without Depots)

For any metric space (X , d) and k ∈ N we can compute in
polynomial time a partition X1, . . . ,Xk of X such that
||(w(X1), . . .w(Xk))|| is minimal up to a factor c ≤ 9, for any
monotone symmetric norm || · ||.



Key Ideas

▶ The monotone symmetric norms can be controlled by the
top-ℓ-norms [Chakrabarty and Swamy 2019]

▶ “good” solutions should be as balanced as possible

▶ If we are forced to create unbalanced solutions we should find
some evidence that balancing the solution would be
unreasonably expensive
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Very Sketchy Proof Sketch, No Depots

Let’s start with (X , d) being a tree, and R as some guess for the
optimum solution value wrt. ℓ∞.

We also assume that all edges of
the tree have length ≤ R.
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Observation
The smallest R for which this process generates the correct
number of trees will also yield a constant factor approximation
with respect to any monotone symmetric norm.

Proof.
The ℓ1 norm of the solution is within a factor 2 of optimal, and all
trees have the same size.



Observation
The smallest R for which this process generates the correct
number of trees will also yield a constant factor approximation
with respect to any monotone symmetric norm.

Proof.
The ℓ1 norm of the solution is within a factor 2 of optimal, and all
trees (but one) have the same size (up to a constant factor).



What if there are long edges?

The proof relies on the subtrees growing “continuously”, i.e. by at
most O(R).

So discard all edges longer than R, and run the
partition algorithm in each component.
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≥ R



With Depots?

Similar, but different.



With Depots?

All of the edges might be short, but some points can still be far
from the depots.

Solution: Solve the problem once at ever “scale”.
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......



Can You Do Better?

Theorem (Our Work)

ℓp-Minimal Tree Cover with prescribed starting points is APX hard
for all p > 1.



Thank You!


