
Approximating Densest Subgraph in Geometric
Intersection Graphs

Sariel Har-Peled1 Saladi Rahul2

1University of Illinois Urbana Champaign (UIUC)

2Indian Institute of Science (IISc),

March 4, 2025

Har-Peled, Rahul

Densest Subgraph

a
b

c

d e

a
b

c

d

Densest subgraph {a, b, c, d}

Density 6
5 = 1.2

5
4 = 1.25

Report the subset of V with the
maximum density

Undirected graph G = (V ,E)

For any S ⊆ V , its density = |ES |
|S |

Each edge in ES ⊆ E has both its
vertices in S

Densest Subgraph

a
b

c

d e

a
b

c

d

Densest subgraph {a, b, c, d}

Density 6
5 = 1.2

5
4 = 1.25

Report the subset of V with the
maximum density

Undirected graph G = (V ,E)

For any S ⊆ V , its density = |ES |
|S |

Each edge in ES ⊆ E has both its
vertices in S

Densest Subgraph

a
b

c

d e

a
b

c

d

Densest subgraph {a, b, c, d}

Density 6
5 = 1.2

5
4 = 1.25

Many applications...

Mining closely-knit communities
Link-spam detection

Lot of interest in the theory and applied
communities

Tommaso Lanciano, Atsushi Miyauchi,
Adriano Fazzone, and Francesco Bonchi.
A survey on the densest subgraph
problem and its variants.

Densest Subgraph

a
b

c

d e

a
b

c

d

Densest subgraph {a, b, c, d}

Density 6
5 = 1.2

5
4 = 1.25

Many applications...

Mining closely-knit communities
Link-spam detection

Lot of interest in the theory and applied
communities

Tommaso Lanciano, Atsushi Miyauchi,
Adriano Fazzone, and Francesco Bonchi.
A survey on the densest subgraph
problem and its variants.

Densest Subgraph

Can be solved exactly in polynomial time

[Goldberg’84], [Gallo, Grigoriadis, Tarjan’89], [Charikar’00],
[Khuller, Saha’09]

2-approximation algorithm

[Asahiro, Iwama, Tamaki and Tokuyama’00]
Analyzed by [Charikar’00]

(1 + ε)-approximation algorithm

[Bahmani, Goel, Munagala’14]

Message: Ω(|E |) time taken by all the algorithms

Har-Peled, Rahul

Densest Subgraph in Disk Intersection Graphs

a
b

c
d

e

c
d

a
b

c

d e

Collection of n disks in the plane

Disk Intersection Graph

A vertex associated with each disk.

Two vertices have an edge iff the
corresponding disks intersect.

Implicit disk intersection graph:

Only the disks are given as input
Edges are not known explicitly

Can near-linear time (in terms of n) algorithms be designed?

Densest Subgraph in Disk Intersection Graphs

a
b

c
d

e

c
d

a
b

c

d e

Collection of n disks in the plane

Disk Intersection Graph

A vertex associated with each disk.

Two vertices have an edge iff the
corresponding disks intersect.

Implicit disk intersection graph:

Only the disks are given as input
Edges are not known explicitly

Can near-linear time (in terms of n) algorithms be designed?

Densest Subgraph in Disk Intersection Graphs

a
b

c
d

e

c
d

a
b

c

d e

Collection of n disks in the plane

Disk Intersection Graph

A vertex associated with each disk.

Two vertices have an edge iff the
corresponding disks intersect.

Implicit disk intersection graph:

Only the disks are given as input
Edges are not known explicitly

Can near-linear time (in terms of n) algorithms be designed?

Densest Subgraph in Disk Intersection Graphs

a
b

c
d

e

c
d

a
b

c

d e

Collection of n disks in the plane

Disk Intersection Graph

A vertex associated with each disk.

Two vertices have an edge iff the
corresponding disks intersect.

Implicit disk intersection graph:

Only the disks are given as input
Edges are not known explicitly

Can near-linear time (in terms of n) algorithms be designed?

Our Results for Disks

Approximation Running Time

(2 + ε) O
(
n log n
ε4

)
≈ Oε(n log n)

(1 + ε) O
(
n log2 n

ε2
(1
ε2

+ log log n)
)
≈ Õε(n log2 n)

Can near-linear time (in terms of n) algorithms be designed?

The (2 + ε)-approximation
algorithm

The (2 + ε)-approximation algorithm

Idea-1: Connection with deepest point

Idea-2: Efficiently throwing away low-degree vertices

Idea-1: Connection with Deepest Point

a
b

c
d

e

c
d

maximum depth= 3

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].

Idea-1: Connection with Deepest Point

a
b

c
d

e

c
d

maximum depth= 3

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].

Idea-1: Connection with Deepest Point

a
b

c
d

e

c
d

maximum depth= 3

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].

Idea-1: Connection with Deepest Point

d

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].

Lemma: deepest−1
2 ≤ OPT ≤ 7 · deepest.

Cute discrete geometry problem.

Idea-1: Connection with Deepest Point

d

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].

Lemma: deepest−1
2 ≤ OPT ≤ 7 · deepest.

Cute discrete geometry problem.

The (2 + ε)-approximation algorithm

Idea-1: Connection with deepest point

Idea-2: Efficiently throwing away low-degree vertices

Idea-2: low-degree vertex

degree < OPT

densest subgraph

degree ≥ OPT

low-degree vertex

Observation: None of the vertices in the optimal solution are
low degree.

Algorithm’s goal: Remove low degree vertices quickly from
the graph.

Idea-2: Few low-degree vertices

degree < OPT

densest subgraph

degree ≥ OPT

low-degree vertex

Case 1: # low-degree vertices ≤ εn.

Most vertices in the graph have degree ≥ OPT .

Entire graph is a good approximation

density = #edges
n ≥ OPT ·(1−ε)n

2n = OPT
2+ε′

Idea-2: Many low-degree vertices

degree < OPT

densest subgraph

degree ≥ OPT

low-degree vertex

Case 2: # low-degree vertices ≥ εn.

Need to throw away such vertices.

Recurse on the remaining graph.

Luckily, number of recursive steps = O(ε−1 log n).

Running time

Efficient data structure for (approximate) degree

Preprocessing time = O(n log n), query time = O(log n).
This is what lets us obtain near-linear time algorithm.

guesses of OPT = O(1).

iterations = O(ε−1 log n).

Running time = O(
∑

i ni log ni) = Oε(n log n), since
ni ≤ (1− ε)ni−1. Optimal!

Running time

Efficient data structure for (approximate) degree

Preprocessing time = O(n log n), query time = O(log n).
This is what lets us obtain near-linear time algorithm.

guesses of OPT = O(1).

iterations = O(ε−1 log n).

Running time = O(
∑

i ni log ni) = Oε(n log n), since
ni ≤ (1− ε)ni−1. Optimal!

Running time

Efficient data structure for (approximate) degree

Preprocessing time = O(n log n), query time = O(log n).
This is what lets us obtain near-linear time algorithm.

guesses of OPT = O(1).

iterations = O(ε−1 log n).

Running time = O(
∑

i ni log ni) = Oε(n log n), since
ni ≤ (1− ε)ni−1. Optimal!

Running time

Efficient data structure for (approximate) degree

Preprocessing time = O(n log n), query time = O(log n).
This is what lets us obtain near-linear time algorithm.

guesses of OPT = O(1).

iterations = O(ε−1 log n).

Running time = O(
∑

i ni log ni) = Oε(n log n), since
ni ≤ (1− ε)ni−1. Optimal!

The (1 + ε)-approximation
algorithm

The (1 + ε)-approximation algorithm

Idea-1: Sampling Oε(n log n) edges suffices

Idea-2: Efficient data structure for sampling edges

Idea-1: Near-linear number of edges sampled

Approximate densest subgraph preserved under
uniform-sampling of edges

Inspired from streaming algorithms

Perform Θε(n · log n) rounds

In each round, probability of picking an edge is ≈ 1±ε
|E |

Let ES be the sampled edges

Run an approximation algorithm on sparse graph (V ,ES)

Idea-1: Near-linear number of edges sampled

Approximate densest subgraph preserved under
uniform-sampling of edges

Inspired from streaming algorithms

Perform Θε(n · log n) rounds

In each round, probability of picking an edge is ≈ 1±ε
|E |

Let ES be the sampled edges

Run an approximation algorithm on sparse graph (V ,ES)

Idea-1: Near-linear number of edges sampled

Approximate densest subgraph preserved under
uniform-sampling of edges

Inspired from streaming algorithms

Perform Θε(n · log n) rounds

In each round, probability of picking an edge is ≈ 1±ε
|E |

Let ES be the sampled edges

Run an approximation algorithm on sparse graph (V ,ES)

Idea-1: Near-linear number of edges sampled

Approximate densest subgraph preserved under
uniform-sampling of edges

Inspired from streaming algorithms

Perform Θε(n · log n) rounds

In each round, probability of picking an edge is ≈ 1±ε
|E |

Let ES be the sampled edges

Run an approximation algorithm on sparse graph (V ,ES)

Idea-2: Efficient Data Structure for Sampling Edges

Streaming algos: Edges are streamed one-by-one.

Trivial to sample.

Implicit geometric intersection graph

Remember edges are not explicitly known!

Key contribution: Generic technique to use range reporting
data structures into samples edges (almost)-uniformly at
random.

Disks: Preprocessing time Oε(n log2 n), sample takes
Õε(log n) time

Idea-2: Efficient Data Structure for Sampling Edges

Streaming algos: Edges are streamed one-by-one.

Trivial to sample.

Implicit geometric intersection graph

Remember edges are not explicitly known!

Key contribution: Generic technique to use range reporting
data structures into samples edges (almost)-uniformly at
random.

Disks: Preprocessing time Oε(n log2 n), sample takes
Õε(log n) time

Idea-2: Efficient Data Structure for Sampling Edges

Streaming algos: Edges are streamed one-by-one.

Trivial to sample.

Implicit geometric intersection graph

Remember edges are not explicitly known!

Key contribution: Generic technique to use range reporting
data structures into samples edges (almost)-uniformly at
random.

Disks: Preprocessing time Oε(n log2 n), sample takes
Õε(log n) time

Idea-2: Efficient Data Structure for Sampling Edges

Streaming algos: Edges are streamed one-by-one.

Trivial to sample.

Implicit geometric intersection graph

Remember edges are not explicitly known!

Key contribution: Generic technique to use range reporting
data structures into samples edges (almost)-uniformly at
random.

Disks: Preprocessing time Oε(n log2 n), sample takes
Õε(log n) time

Final Comments

Other Geometric Intersection Graphs

Prerequisite: Efficient range reporting data structures.

Can obtain (1 + ε)-approximation and (2 + ε)-approximation.

Axis-aligned boxes in d-dimensions

n logO(d) n running time.

Balls in d-dimensions

O(n2−λ) running time for some λ ∈ (0, 1).

Open Problems

Exact computation of densest subgraph in sub-quadratic
time?

Unit-disk graphs or Interval graphs?

Dynamic densest subgraph under insertion and deletion of
disks

Update time: sub-linear in n?
Several edges are implicitly inserted or deleted in each round.

Other variants of densest subgraph in geometric intersection
graphs.

Open Problems

Exact computation of densest subgraph in sub-quadratic
time?

Unit-disk graphs or Interval graphs?

Dynamic densest subgraph under insertion and deletion of
disks

Update time: sub-linear in n?
Several edges are implicitly inserted or deleted in each round.

Other variants of densest subgraph in geometric intersection
graphs.

Open Problems

Exact computation of densest subgraph in sub-quadratic
time?

Unit-disk graphs or Interval graphs?

Dynamic densest subgraph under insertion and deletion of
disks

Update time: sub-linear in n?
Several edges are implicitly inserted or deleted in each round.

Other variants of densest subgraph in geometric intersection
graphs.

Thank You

