Approximating Densest Subgraph in Geometric Intersection Graphs

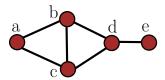
Sariel Har-Peled¹ Saladi Rahul²

¹University of Illinois Urbana Champaign (UIUC)

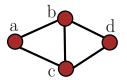
²Indian Institute of Science (IISc),

March 4, 2025

Density $\frac{6}{5} = 1.2$



• Report the subset of *V* with the *maximum density*



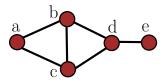
Densest subgraph $\{a,b,c,d\}$ $\frac{5}{4}=1.25$

Density $\frac{6}{5} = 1.2$ а а

Densest subgraph $\{a,b,c,d\}$ $\frac{5}{4}=1.25$

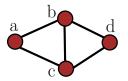
- Report the subset of *V* with the *maximum density*
- Undirected graph G = (V, E)
- For any $S \subseteq V$, its density $= \frac{|E_S|}{|S|}$
- Each edge in E_S ⊆ E has both its vertices in S

Density $\frac{6}{5} = 1.2$

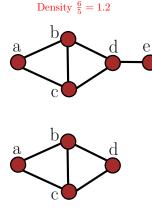


• Many applications...

- Mining closely-knit communities
- Link-spam detection
- Lot of interest in the theory and applied communities



Densest subgraph $\{a,b,c,d\}$ $\frac{5}{4}=1.25$

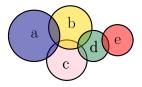


Densest subgraph $\{a,b,c,d\}$ $\frac{5}{4}=1.25$

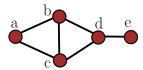
• Many applications...

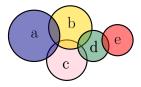
- Mining closely-knit communities
- Link-spam detection
- Lot of interest in the theory and applied communities
- Tommaso Lanciano, Atsushi Miyauchi, Adriano Fazzone, and Francesco Bonchi. *A survey on the densest subgraph problem and its variants.*

- Can be solved exactly in polynomial time
 - [Goldberg'84], [Gallo, Grigoriadis, Tarjan'89], [Charikar'00], [Khuller, Saha'09]
- 2-approximation algorithm
 - [Asahiro, Iwama, Tamaki and Tokuyama'00]
 - Analyzed by [Charikar'00]
- $(1 + \varepsilon)$ -approximation algorithm
 - [Bahmani, Goel, Munagala'14]
- Message: $\Omega(|E|)$ time taken by all the algorithms

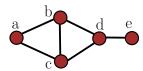


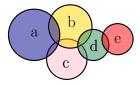
- Collection of *n* disks in the plane
- Disk Intersection Graph



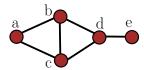


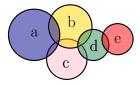
- Collection of *n* disks in the plane
- Disk Intersection Graph
- A vertex associated with each disk.

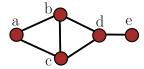




- Collection of *n disks* in the plane
- Disk Intersection Graph
- A vertex associated with each disk.
- Two vertices have an edge iff the corresponding disks intersect.





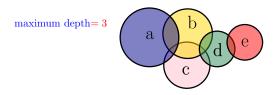


- Collection of *n disks* in the plane
- Disk Intersection Graph
- A vertex associated with each disk.
- Two vertices have an edge iff the corresponding disks intersect.
- Implicit disk intersection graph:
 - Only the disks are given as input
 - Edges are not known *explicitly*

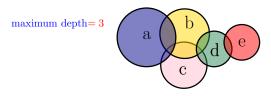
ApproximationRunning Time
$$(2 + \varepsilon)$$
 $O\left(\frac{n\log n}{\varepsilon^4}\right) \approx O_{\varepsilon}(n\log n)$ $(1 + \varepsilon)$ $O\left(\frac{n\log^2 n}{\varepsilon^2}(\frac{1}{\varepsilon^2} + \log\log n)\right) \approx \tilde{O}_{\varepsilon}(n\log^2 n)$

The $(2 + \varepsilon)$ -approximation algorithm

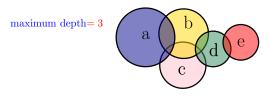
- Idea-1: Connection with deepest point
- Idea-2: Efficiently throwing away low-degree vertices



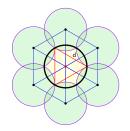
• *Depth* of *p* is the number of disks containing point *p*.



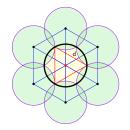
- *Depth* of *p* is the number of disks containing point *p*.
- *Deepest* point is maximum depth point.



- *Depth* of *p* is the number of disks containing point *p*.
- Deepest point is maximum depth point.
 - A 1.1-approximation can be computed in $O(n \log n)$ time [Aronov and Har-Peled'08].



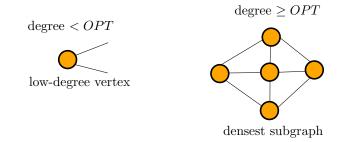
- *Depth* of *p* is the number of disks containing point *p*.
- *Deepest* point is maximum depth point.
 - A 1.1-approximation can be computed in $O(n \log n)$ time [Aronov and Har-Peled'08].



- *Depth* of *p* is the number of disks containing point *p*.
- Deepest point is maximum depth point.
 - A 1.1-approximation can be computed in $O(n \log n)$ time [Aronov and Har-Peled'08].
- Lemma: $\frac{deepest-1}{2} \leq OPT \leq 7 \cdot deepest$.
 - Cute discrete geometry problem.

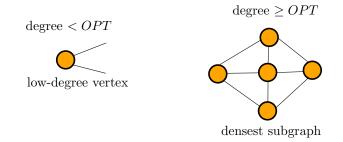
- Idea-1: Connection with deepest point
- Idea-2: Efficiently throwing away low-degree vertices

Idea-2: low-degree vertex



- *Observation:* None of the vertices in the optimal solution are low degree.
- *Algorithm's goal:* Remove low degree vertices quickly from the graph.

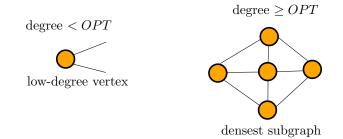
Idea-2: Few low-degree vertices



- Case 1: # low-degree vertices $\leq \varepsilon n$.
- *Most* vertices in the graph have degree $\geq OPT$.
- Entire graph is a good approximation

• density $= \frac{\#edges}{n} \ge \frac{OPT \cdot (1-\varepsilon)n}{2n} = \frac{OPT}{2+\varepsilon'}$

Idea-2: Many low-degree vertices



- Case 2: # low-degree vertices $\geq \varepsilon n$.
- Need to throw away such vertices.
- *Recurse* on the remaining graph.
- *Luckily*, number of recursive steps = $O(\varepsilon^{-1} \log n)$.

• Efficient data structure for *(approximate) degree*

- Preprocessing time = $O(n \log n)$, query time = $O(\log n)$.
- This is what lets us obtain *near-linear* time algorithm.

- Efficient data structure for *(approximate) degree*
 - Preprocessing time = $O(n \log n)$, query time = $O(\log n)$.
 - This is what lets us obtain *near-linear* time algorithm.
- # guesses of OPT = O(1).

- Efficient data structure for *(approximate) degree*
 - Preprocessing time = $O(n \log n)$, query time = $O(\log n)$.
 - This is what lets us obtain *near-linear* time algorithm.
- # guesses of OPT = O(1).
- # iterations = $O(\varepsilon^{-1} \log n)$.

- Efficient data structure for *(approximate) degree*
 - Preprocessing time = $O(n \log n)$, query time = $O(\log n)$.
 - This is what lets us obtain *near-linear* time algorithm.
- # guesses of OPT = O(1).
- # iterations = $O(\varepsilon^{-1} \log n)$.
- Running time = $O(\sum_{i} n_i \log n_i) = O_{\varepsilon}(n \log n)$, since $n_i \le (1 \varepsilon)n_{i-1}$. Optimal!

The $(1 + \varepsilon)$ -approximation algorithm

- *Idea-1: Sampling* $O_{\varepsilon}(n \log n)$ edges suffices
- Idea-2: Efficient data structure for sampling edges

- Approximate densest subgraph preserved under *uniform-sampling* of edges
 - Inspired from streaming algorithms

- Approximate densest subgraph preserved under uniform-sampling of edges
 - Inspired from streaming algorithms
- Perform $\Theta_{\varepsilon}(n \cdot \log n)$ rounds
 - In each round, probability of picking an edge is $\approx \frac{1\pm\varepsilon}{|E|}$

- Approximate densest subgraph preserved under uniform-sampling of edges
 - Inspired from streaming algorithms
- Perform $\Theta_{\varepsilon}(n \cdot \log n)$ rounds
 - In each round, probability of picking an edge is $\approx \frac{1 \pm \varepsilon}{|E|}$
- Let E_S be the sampled edges

- Approximate densest subgraph preserved under uniform-sampling of edges
 - Inspired from streaming algorithms
- Perform $\Theta_{\varepsilon}(n \cdot \log n)$ rounds
 - In each round, probability of picking an edge is $\approx \frac{1 \pm \varepsilon}{|E|}$
- Let E_S be the sampled edges
- Run an approximation algorithm on sparse graph (V, E_S)

- Streaming algos: Edges are streamed one-by-one.
 - Trivial to sample.

- Streaming algos: Edges are streamed one-by-one.
 - Trivial to sample.
- Implicit geometric intersection graph
 - Remember edges are not explicitly known!

- Streaming algos: Edges are streamed one-by-one.
 - Trivial to sample.
- Implicit geometric intersection graph
 - Remember edges are not explicitly known!
- *Key contribution:* Generic technique to use *range reporting* data structures into samples edges (almost)-*uniformly* at random.

- Streaming algos: Edges are streamed one-by-one.
 - Trivial to sample.
- Implicit geometric intersection graph
 - Remember edges are not explicitly known!
- *Key contribution:* Generic technique to use *range reporting* data structures into samples edges (almost)-*uniformly* at random.
- Disks: Preprocessing time $O_{\varepsilon}(n \log^2 n)$, sample takes $\tilde{O}_{\varepsilon}(\log n)$ time

Final Comments

- Prerequisite: Efficient range reporting data structures.
- Can obtain $(1 + \varepsilon)$ -approximation and $(2 + \varepsilon)$ -approximation.
- Axis-aligned boxes in d-dimensions
 n log^{O(d)} n running time.
- **Balls** in *d*-dimensions
 - $O(n^{2-\lambda})$ running time for some $\lambda \in (0,1)$.

- *Exact* computation of densest subgraph in *sub-quadratic* time?
 - Unit-disk graphs or Interval graphs?

- *Exact* computation of densest subgraph in *sub-quadratic* time?
 - Unit-disk graphs or Interval graphs?
- *Dynamic* densest subgraph under insertion and deletion of disks
 - Update time: *sub-linear* in *n*?
 - Several edges are *implicitly* inserted or deleted in each round.

- *Exact* computation of densest subgraph in *sub-quadratic* time?
 - Unit-disk graphs or Interval graphs?
- *Dynamic* densest subgraph under insertion and deletion of disks
 - Update time: *sub-linear* in *n*?
 - Several edges are *implicitly* inserted or deleted in each round.
- Other variants of densest subgraph in geometric intersection graphs.

Thank You