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Densest Subgraph

Can be solved exactly in polynomial time

[Goldberg’84], [Gallo, Grigoriadis, Tarjan’89], [Charikar’00],
[Khuller, Saha’09]

2-approximation algorithm

[Asahiro, Iwama, Tamaki and Tokuyama’00]
Analyzed by [Charikar’00]

(1 + ε)-approximation algorithm

[Bahmani, Goel, Munagala’14]

Message: Ω(|E |) time taken by all the algorithms

Har-Peled, Rahul
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Collection of n disks in the plane

Disk Intersection Graph

A vertex associated with each disk.

Two vertices have an edge iff the
corresponding disks intersect.

Implicit disk intersection graph:

Only the disks are given as input
Edges are not known explicitly

Can near-linear time (in terms of n) algorithms be designed?
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Our Results for Disks

Approximation Running Time

(2 + ε) O
(
n log n
ε4

)
≈ Oε(n log n)

(1 + ε) O
(
n log2 n

ε2
( 1
ε2

+ log log n)
)
≈ Õε(n log2 n)

Can near-linear time (in terms of n) algorithms be designed?



The (2 + ε)-approximation
algorithm



The (2 + ε)-approximation algorithm

Idea-1: Connection with deepest point

Idea-2: Efficiently throwing away low-degree vertices



Idea-1: Connection with Deepest Point
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maximum depth= 3

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].



Idea-1: Connection with Deepest Point

a
b

c
d

e

c
d

maximum depth= 3

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].



Idea-1: Connection with Deepest Point

a
b

c
d

e

c
d

maximum depth= 3

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].



Idea-1: Connection with Deepest Point

d

Depth of p is the number of disks containing point p.

Deepest point is maximum depth point.

A 1.1-approximation can be computed in O(n log n) time
[Aronov and Har-Peled’08].

Lemma: deepest−1
2 ≤ OPT ≤ 7 · deepest.

Cute discrete geometry problem.
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The (2 + ε)-approximation algorithm

Idea-1: Connection with deepest point

Idea-2: Efficiently throwing away low-degree vertices



Idea-2: low-degree vertex

degree < OPT

densest subgraph

degree ≥ OPT

low-degree vertex

Observation: None of the vertices in the optimal solution are
low degree.

Algorithm’s goal: Remove low degree vertices quickly from
the graph.



Idea-2: Few low-degree vertices

degree < OPT

densest subgraph

degree ≥ OPT

low-degree vertex

Case 1: # low-degree vertices ≤ εn.

Most vertices in the graph have degree ≥ OPT .

Entire graph is a good approximation

density = #edges
n ≥ OPT ·(1−ε)n

2n = OPT
2+ε′



Idea-2: Many low-degree vertices

degree < OPT

densest subgraph

degree ≥ OPT

low-degree vertex

Case 2: # low-degree vertices ≥ εn.

Need to throw away such vertices.

Recurse on the remaining graph.

Luckily, number of recursive steps = O(ε−1 log n).



Running time

Efficient data structure for (approximate) degree

Preprocessing time = O(n log n), query time = O(log n).
This is what lets us obtain near-linear time algorithm.

# guesses of OPT = O(1).

# iterations = O(ε−1 log n).

Running time = O(
∑

i ni log ni ) = Oε(n log n), since
ni ≤ (1− ε)ni−1. Optimal!
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The (1 + ε)-approximation
algorithm



The (1 + ε)-approximation algorithm

Idea-1: Sampling Oε(n log n) edges suffices

Idea-2: Efficient data structure for sampling edges



Idea-1: Near-linear number of edges sampled

Approximate densest subgraph preserved under
uniform-sampling of edges

Inspired from streaming algorithms

Perform Θε(n · log n) rounds

In each round, probability of picking an edge is ≈ 1±ε
|E |

Let ES be the sampled edges

Run an approximation algorithm on sparse graph (V ,ES)
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Idea-2: Efficient Data Structure for Sampling Edges

Streaming algos: Edges are streamed one-by-one.

Trivial to sample.

Implicit geometric intersection graph

Remember edges are not explicitly known!

Key contribution: Generic technique to use range reporting
data structures into samples edges (almost)-uniformly at
random.

Disks: Preprocessing time Oε(n log2 n), sample takes
Õε(log n) time
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Õε(log n) time



Final Comments



Other Geometric Intersection Graphs

Prerequisite: Efficient range reporting data structures.

Can obtain (1 + ε)-approximation and (2 + ε)-approximation.

Axis-aligned boxes in d-dimensions

n logO(d) n running time.

Balls in d-dimensions

O(n2−λ) running time for some λ ∈ (0, 1).



Open Problems

Exact computation of densest subgraph in sub-quadratic
time?

Unit-disk graphs or Interval graphs?

Dynamic densest subgraph under insertion and deletion of
disks

Update time: sub-linear in n?
Several edges are implicitly inserted or deleted in each round.

Other variants of densest subgraph in geometric intersection
graphs.
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