Approximation of Spanning Tree Congestion using Hereditary Bisection

Petr Kolman

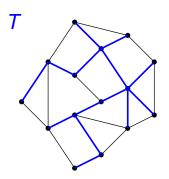
Charles University, Prague

STACS 2025

Preliminaries

Definitions

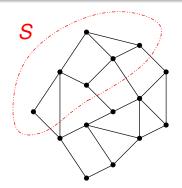
- spanning tree of G = (V, E): subgraph of G that is a tree containing all vertices of G
- *cut* of G = (V, E): partition of V into two subsets S and $V \setminus S$
- cut size: $|E(S, V \setminus S)|$ = number of edges between S and $V \setminus S$



Preliminaries

Definitions

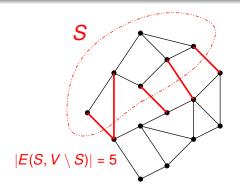
- spanning tree of G = (V, E): subgraph of G that is a tree containing all vertices of G
- *cut* of G = (V, E): partition of V into two subsets S and $V \setminus S$
- cut size: $|E(S, V \setminus S)|$ = number of edges between S and $V \setminus S$



Preliminaries

Definitions

- spanning tree of G = (V, E): subgraph of G that is a tree containing all vertices of G
- *cut* of G = (V, E): partition of V into two subsets S and $V \setminus S$
- *cut size*: $|E(S, V \setminus S)|$ = number of edges between S and $V \setminus S$



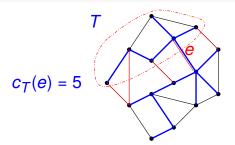
Spanning Tree Congestion

Cuts Induced by a Spanning Tree

- given a spanning tree T of G and an edge e ∈ T, the removal of e defines a cut in G - let c_T(e) denote its size
- congestion of a span. tree T of G: $STC(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

• STC(G) = min $_{T \in \mathcal{T}}$ STC(G, T) where T = all spanning trees of G



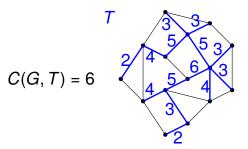
Spanning Tree Congestion

Cuts Induced by a Spanning Tree

- given a spanning tree T of G and an edge e ∈ T, the removal of e defines a cut in G - let c_T(e) denote its size
- congestion of a span. tree T of G: $STC(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

• STC(G) = min $_{T \in \mathcal{T}}$ STC(G, T) where \mathcal{T} = all spanning trees of G



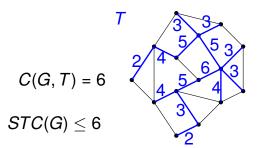
Spanning Tree Congestion

Cuts Induced by a Spanning Tree

- given a spanning tree T of G and an edge e ∈ T, the removal of e defines a cut in G - let c_T(e) denote its size
- congestion of a span. tree T of G: $STC(G, T) = \max_{e \in T} c_T(e)$

Spanning Tree Congestion

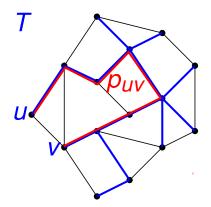
• $STC(G) = min_{T \in \mathcal{T}} STC(G, \mathcal{T})$ where $\mathcal{T} = all$ spanning trees of G



Spanning Tree Congestion - Alternative View

Simulating G by its Spanning Tree T

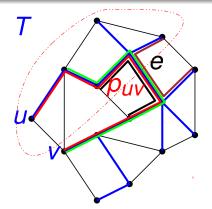
- given a spanning tree T of G, for every edge $uv \in E(G)$ there is a unique path p_{uv} in T between u and v
- Claim: for every $e \in E(T)$, $c_T(e) = |\{uv \in E(G) \mid p_{uv} \ni e\}|$.



Spanning Tree Congestion - Alternative View

Simulating G by its Spanning Tree T

- given a spanning tree T of G, for every edge $uv \in E(G)$ there is a unique path p_{uv} in T between u and v
- Claim: for every $e \in E(T)$, $c_T(e) = |\{uv \in E(G) \mid p_{uv} \ni e\}|$.



Selected Known Results

Optimization and Decision Versions

- STC: given G, compute STC(G) and find the corresponding tree
- k STC: given G and $k \in \mathbb{N}$, is $STC(G) \le k$?

Complexity and Approximation

- 1987 Simonson: problem first studied, under different name
- 2004 Ostrovskii: STC name, graph-theoretic results
- 2010 Otachi et al., Löwenstein: NP-hard, even for planar graphs
- 2010 Otachi et al.: for $k \le 3$, k STC in P
 - n/2-approximation (as STC $\geq m/n$)
- 2010 Okamoto et al.: exact $O(2^n)$ -time algorithm

Selected Known Results, contd.

Complexity and Approximation, contd.

- 2012 Bodlaender et al.: NP-hard even for graphs with all but one degrees bounded by O(1)
 - 8 − STC NP-hard \Rightarrow no *c*-approx. for c < 9/8
 - k − STC FPT w.r.t. k and max degree
 - k STC FPT w.r.t. k and treewidth
- 2019 Chandran et al.: STC = $O(\sqrt{mn})$ $\Rightarrow O(n/\log n)$ -approx. if $\omega(n\log^2 n)$ edges
- 2023 Luu and Chrobak: 5 STC NP-hard, no c-approximation, for c < 6/5, unless P=NP
- 2024 Kolman: o(n)-approx. on graphs with polylog degree
- 2024 Lampis et al.: STC NP-hard for graphs with max degree 8

Observe

• $\Omega(n)$ gap between lower and upper bounds on approximability

Selected Known Results, contd.

Complexity and Approximation, contd.

- 2012 Bodlaender et al.: NP-hard even for graphs with all but one degrees bounded by O(1)
 - 8 − STC NP-hard \Rightarrow no *c*-approx. for c < 9/8
 - k − STC FPT w.r.t. k and max degree
 - k STC FPT w.r.t. k and treewidth
- 2019 Chandran et al.: STC = $O(\sqrt{mn})$ $\Rightarrow O(n/\log n)$ -approx. if $\omega(n\log^2 n)$ edges
- 2023 Luu and Chrobak: 5 STC NP-hard, no c-approximation, for c < 6/5, unless P=NP
- 2024 Kolman: o(n)-approx. on graphs with polylog degree
- 2024 Lampis et al.: STC NP-hard for graphs with max degree 8

Observe

• $\Omega(n)$ gap between lower and upper bounds on approximability

New Results

Algorithm

• $O(\Delta \cdot \log^{3/2} n)$ -approximation of STC where Δ is the max degree

Note: An exponential improvement for polylog-degree graphs.

Lower Bound

• $STC(G) \ge \Omega(hb(G)/\Delta)$ where hb(G) is the hereditary bisection, which is the maximum bisection width over all subgraphs of G

Bisection b(G) of G = (V, E)

Hereditary Bisection hb(G)

•
$$hb(G) = \max\{b(H) : H \text{ subgraph of } G\}$$

c-Balanced Cut , $c \ge 1/2$

• a subset S of V s. t. $|S|, |V \setminus S| \le c \cdot n$, minimizing $|E(S, V \setminus S)|$

Edge Expansion $\beta(G)$

$$\qquad \qquad \beta(G) = \min_{S \subset V} \frac{|E(S, V \setminus S)|}{\min\{|S|, |V \setminus S|\}}$$

Theorem (K., Matoušek, 2004)

Bisection b(G) of G = (V, E)

 $\bullet \ b(G) = \min_{S \subset V} \{ |E(S, V \setminus S)| : |S| = n/2 \}$

Hereditary Bisection hb(G)

• $hb(G) = max\{b(H) : H \text{ subgraph of } G\}$

c-Balanced Cut , $c \geq 1/2$

• a subset S of V s. t. $|S|, |V \setminus S| \le c \cdot n$, minimizing $|E(S, V \setminus S)|$

Edge Expansion $\beta(G)$

$$\beta(G) = \min_{S \subset V} \frac{|E(S, V \setminus S)|}{\min\{|S|, |V \setminus S|\}}$$

Theorem (K., Matoušek, 2004)

Bisection b(G) of G = (V, E)

 $\bullet \ b(G) = \min_{S \subset V} \{ |E(S, V \setminus S)| : |S| = n/2 \}$

Hereditary Bisection hb(G)

• $hb(G) = max\{b(H) : H \text{ subgraph of } G\}$

c-Balanced Cut , $c \ge 1/2$

• a subset S of V s. t. $|S|, |V \setminus S| \le c \cdot n$, minimizing $|E(S, V \setminus S)|$

Edge Expansion $\beta(G)$

$$\beta(G) = \min_{S \subset V} \frac{|E(S, V \setminus S)|}{\min\{|S|, |V \setminus S|\}}$$

Theorem (K., Matoušek, 2004)

Bisection b(G) of G = (V, E)

$$\bullet \ b(G) = \min_{S \subset V} \{ |E(S, V \setminus S)| : |S| = n/2 \}$$

Hereditary Bisection hb(G)

• $hb(G) = max\{b(H) : H \text{ subgraph of } G\}$

c-Balanced Cut , $c \ge 1/2$

• a subset S of V s. t. $|S|, |V \setminus S| \le c \cdot n$, minimizing $|E(S, V \setminus S)|$

Edge Expansion $\beta(G)$

$$\qquad \qquad \beta(G) = \min_{S \subset V} \frac{|E(S, V \setminus S)|}{\min\{|S|, |V \setminus S|\}}$$

Theorem (K., Matoušek, 2004)

Bisection b(G) of G = (V, E)

 $\bullet \ b(G) = \min_{S \subset V} \{ |E(S, V \setminus S)| : |S| = n/2 \}$

Hereditary Bisection hb(G)

• $hb(G) = max\{b(H) : H \text{ subgraph of } G\}$

c-Balanced Cut, $c \ge 1/2$

• a subset S of V s. t. $|S|, |V \setminus S| \le c \cdot n$, minimizing $|E(S, V \setminus S)|$

Edge Expansion $\beta(G)$

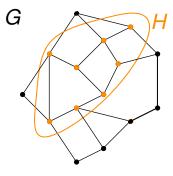
$$\qquad \qquad \beta(G) = \min_{S \subset V} \frac{|E(S, V \setminus S)|}{\min\{|S|, |V \setminus S|\}}$$

Theorem (K., Matoušek, 2004)

Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

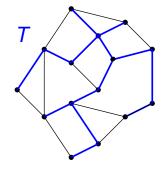
- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{A}$



Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

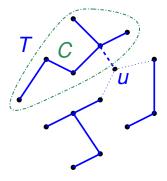
- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{\Delta}$



Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

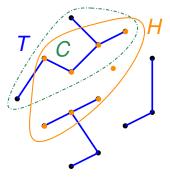
- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{\Delta}$



Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

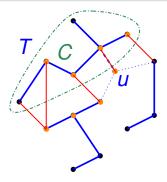
- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{A}$



Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

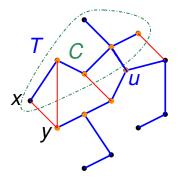
- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{\Delta}$



Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

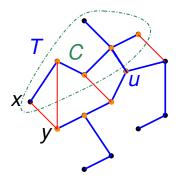
- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{A}$



Lemma (Expansion Lower Bound)

For every subgraph H of G, $STC(G) \ge \frac{\beta(H) \cdot k}{\Delta}$ where k = |V(H)|.

- T the optimal spanning tree
- Pick $u \in T$ and a component C of $T \setminus u$ s.t. $\frac{k}{\Delta} \leq |C \cap H| \leq \frac{k}{2}$
- Then $|E(C, V \setminus C)| \ge \beta(H) \frac{k}{\Delta}$
- For each $xy \in E(C, V \setminus C)$, the x - y path in T goes through the edge $Cu \in T$
- Thus, $STC(G) = STC(G, T) \ge |E(C, V \setminus C)| \ge \frac{\beta(H) \cdot k}{\Delta}$



Theorem (Hereditary Bisection Bound)

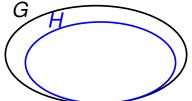
For every graph G = (V, E), $STC(G) \ge \Omega\left(\frac{hb(G)}{\Delta}\right)$.

- Let *H* be subgraph of *G* with max bisection, i.e., b(H) = hb(G).
- By the Thm (K., Matoušek, 2004), there is a subgraph H' of H s.t. $\beta(H') \geq \frac{b(H)}{|V(H)|}$ and $|V(H')| \geq \frac{2}{3}|V(H)|$.
- By Lemma applied to $\frac{H'}{\Delta}$: STC $(G) \geq \frac{\beta(H') \cdot |V(H')|}{\Delta} \geq \frac{b(H)}{|V(H)|} \cdot \frac{2 \cdot |V(H)|}{3 \cdot \Delta} = \frac{2 \cdot hb(G)}{3 \cdot \Delta}$

Theorem (Hereditary Bisection Bound)

For every graph G = (V, E), $STC(G) \ge \Omega\left(\frac{hb(G)}{\Delta}\right)$.

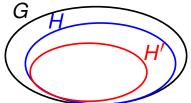
- Let H be subgraph of G with max bisection, i.e., b(H) = hb(G).
- By the Thm (K., Matoušek, 2004), there is a subgraph H' of H s.t. $\beta(H') \geq \frac{b(H)}{|V(H)|}$ and $|V(H')| \geq \frac{2}{3}|V(H)|$.
- By Lemma applied to H': STC $(G) \ge \frac{\beta(H') \cdot |V(H')|}{\Delta} \ge \frac{b(H)}{|V(H)|} \cdot \frac{2 \cdot |V(H)|}{3 \cdot \Delta} = \frac{2 \cdot hb(G)}{3 \cdot \Delta}$



Theorem (Hereditary Bisection Bound)

For every graph G = (V, E), $STC(G) \ge \Omega\left(\frac{hb(G)}{\Delta}\right)$.

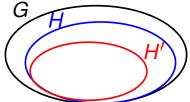
- Let H be subgraph of G with max bisection, i.e., b(H) = hb(G).
- By the Thm (K., Matoušek, 2004), there is a subgraph H' of H s.t. $\beta(H') \geq \frac{b(H)}{|V(H)|}$ and $|V(H')| \geq \frac{2}{3}|V(H)|$.
- By Lemma applied to $\frac{H'}{\Delta}$: STC $(G) \geq \frac{\beta(H') \cdot |V(H')|}{\Delta} \geq \frac{b(H)}{|V(H)|} \cdot \frac{2 \cdot |V(H)|}{3 \cdot \Delta} = \frac{2 \cdot hb(G)}{3 \cdot \Delta}$



Theorem (Hereditary Bisection Bound)

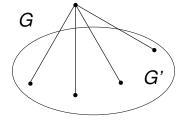
For every graph G = (V, E), $STC(G) \ge \Omega\left(\frac{hb(G)}{\Delta}\right)$.

- Let H be subgraph of G with max bisection, i.e., b(H) = hb(G).
- By the Thm (K., Matoušek, 2004), there is a subgraph H' of H s.t. $\beta(H') \geq \frac{b(H)}{|V(H)|}$ and $|V(H')| \geq \frac{2}{3}|V(H)|$.
- By Lemma applied to $\frac{H'}{\Delta}$: STC $(G) \ge \frac{\beta(H') \cdot |V(H')|}{\Delta} \ge \frac{b(H)}{|V(H)|} \cdot \frac{2 \cdot |V(H)|}{3 \cdot \Delta} = \frac{2 \cdot hb(G)}{3 \cdot \Delta}$



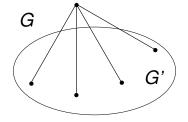
Tight Example

- $b(G') = \Omega(n)$, thus, $hb(G) = \Omega(n)$
- $\Delta(G) = n 1$
- STC(G) = $\Omega\left(\frac{hb(G)}{\Delta}\right) = \Omega(1)$
- STC(G) = O(1) as the star rooted at the new vertex has congestion O(1)



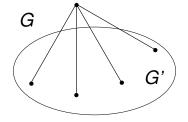
Tight Example

- $b(G') = \Omega(n)$, thus, $hb(G) = \Omega(n)$
- $\Delta(G) = n 1$
- STC(G) = $\Omega\left(\frac{hb(G)}{\Delta}\right) = \Omega(1)$
- STC(G) = O(1) as the star rooted at the new vertex has congestion O(1)



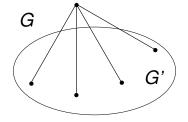
Tight Example

- $b(G') = \Omega(n)$, thus, $hb(G) = \Omega(n)$
- $\Delta(G) = n 1$
- STC(G) = $\Omega\left(\frac{hb(G)}{\Delta}\right) = \Omega(1)$
- STC(G) = O(1) as the star rooted at the new vertex has congestion O(1)



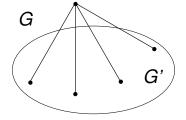
Tight Example

- $b(G') = \Omega(n)$, thus, $hb(G) = \Omega(n)$
- Δ (*G*) = *n* − 1
- STC(G) = $\Omega\left(\frac{hb(G)}{\Delta}\right) = \Omega(1)$
- STC(G) = O(1) as the star rooted at the new vertex has congestion O(1)



Tight Example

- $b(G') = \Omega(n)$, thus, $hb(G) = \Omega(n)$
- Δ (*G*) = *n* − 1
- STC(G) = $\Omega\left(\frac{hb(G)}{\Delta}\right) = \Omega(1)$
- STC(G) = O(1) as the star rooted at the new vertex has congestion O(1)



Approximation Algorithm - Sketch

Key Tools

- The new lower bound $OPT = \Omega\left(\frac{hb(G)}{\Delta}\right)$.
- Poly time algorithm (Arora, Rao, Vazirani, 2004) for 2/3-balanced cut of size O(√log n · b(G)).

Key Ideas

- Recursively bisect the graph until each part is small.
- Each level of recursion causes congestion (cf. new lower bound)

$$O(\sqrt{\log n} \cdot hb(G)) = O(\sqrt{\log n} \cdot \Delta \cdot OPT)$$
.

Overall congestion

$$O(\log^{3/2} n \cdot hb(G)) = O(\log^{3/2} n \cdot \Delta \cdot OPT).$$

Approximation Algorithm

```
ConstructST(H)
```

return H

```
1: if |V(H)| > 1 then

2: construct 2/3-balanced cut F \subset E(H) of H

3: for each component C of H \setminus F do

4: T_C \leftarrow \text{ConstructST}(C)

5: connect all the spanning trees T_C into a spanning tree T of H

6: return T

7: else
```

Theorem

8:

ConstructST is an $O(\Delta \cdot \log^{3/2} n)$ -approximation algorithm.

Open Problems

Three Questions

- A better approximation of STC for graphs with large \triangle ?
- A better lower bound for STC for graphs with large \triangle ?
- Other usage of hereditary bisection?

Thank you!