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Synchronous vs. Asynchronous

Many kinds of “daemons”

Synchronous daemon
At each step, all nodes are synchronously activated.

Distributed fair daemon
At each step, some nodes are activated.
No contraints other that nodes cannot “starve”.

Distributed unfair daemon
At each step, some nodes are activated.
No constraints. Thus nodes can “starve”.
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Self-Stabilization & Unison

Self-Stabilization
The initial configuration is arbitrary.

Models error recovery after “transient” faults.1

(Asynchronous) Unison
Each node has a local clock.
Neighboring clocks differ by ≤ 1 increment.
All clocks increase infinitely often.

A consequence
Run a self-stabilizing algorithm under a synchronous daemon.

1TCP is a self-stabilizing heuristic.
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Complexity measures

Round complexity
Captures the “execution time”.

relevant parameter: D (diameter of G).

Move complexity
Captures the “total workload”.

relevant parameter: n (the number of nodes of G).

Space complexity
Captures the local memory requirement.
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Communication Model

Atomic State Model: Classical in self-stabilization [Dijkstra, 1974]

Locally shared memory model

with composite atomicity

Each node u has a local state.

When moving, u atomically
• reads the states of its neighbors,
• changes its state.

Variants
• Nodes receive sets/multisets/. . . of states
• Nodes identified or not identified
• Ports labeled or not labeled
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Litterature on Unison
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Couvreur et al. (ICDCS’92)2 ? ? Θ(log N) unfair

Awerbuch et al. (STOC’93)2 O(D) ? ∞ unfair
Boulinier et al. (PODC’04) O(n) O(Dn3) Θ(log N) unfair
Emek et Keren. (PODC’21) O(B3) unbounded Θ(log B) fair

This paper O(D) O(n3) Θ(log B) unfair

Finite memory implies the knowledge of N ≥ n or B ≥ D.
2Not in Atomic State Model
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Consequences

Rounds Moves Space
Unison 2D + 2 O

(
min(n2B, n3)

)
⌈log B⌉ + 2

Synchronizer 5D + 3T O
(
min(n2B, n3) + nT

)
2M + ⌈log B⌉ + 2

Synchronizer input: self-stabilizing algorithm A
T , M = synchronous time, space of A.

Problem Rounds Moves Space
BFS tree in rooted networks O(D) O(n3) Θ(log B + log ∆)
BFS tree in identified networks O(D) O(n3) Θ(log N)
Leader election O(D) O(n3) Θ(log N)
O(n

k )-clustering O(D) O(n3) Θ(log k + log N)

With B ≥ 2D + 2

and N ≥ n
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Questions?

State: p.s ∈ {C, E}, p.c ∈
{

[−B, B) if p.s = C

[−B, 0) if p.s = E

Predicates:
root(p) :=

(
p.s = E ∧ ¬(∃q ∈ N(p), q.s = E ∧ q.c < p.c)

)
∨(

p.s = C ∧ ∃q ∈ N(p), (q.c ≥ p.c + 2) ∧ ¬(p.c = 0 ∧ q.c = B − 1)
)

activeRoot(p) := root(p) ∧ (p.c ̸= −B ∨ p.s = C)

errP ropag(p, i) := i < 0 ∧ ∃q ∈ N(p), q.s = E ∧ q.c < i < p.c

canClearE(p) := p.s = E ∧ ∀q ∈ N(p),
(

|q.c − p.c| ≤ 1 ∧ (q.c ≤ p.c ∨ q.s = C)
)

updatable(p) := p.s = C ∧ ∀q ∈ N(p), q.c ∈ {p.c, p.c ⊕B 1}

Rules:
RR : activeRoot(p) → (p.s, p.c) := (E, −B) RC : canClearE(p) → p.s := C

RP (i) : errP ropag(p, i) → (p.s, p.c) := (E, i) RU : updatable(p) → p.c := p.c ⊕B 1

RR: highest priority, RP (i) higher priority that RP (i + l) for l > 0.
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