

 n^k trivial algorithm

 n^k

 $f(k) \cdot poly(n)$? **FPT** time?

 n^k

 $k^k \cdot O(n^{42})$? **FPT** time?

 n^k

f(k) poly(n) W[1]-hardness

 n^k

f(k) poly(n) W[1]-hardness

 $f(k) \cdot n^{o(k)}$?

 n^k

no $n^{o(k)}$ algorithm

no $n^{o(k)}$ algorithm

no $n^{o(k)}$ algorithm

no $n^{o(\sqrt{t})}$ algorithm

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that ColSub(H) cannot be solved in time $n^{o(\ell)}$?

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that ColSub(H) cannot be solved in time $n^{o(\ell)}$?

If this is true, then we have **tight** lower bounds for:

trivial

trivial ir

in **P**

large **treewidth** \iff W[1]-hardness

large **treewidth** \iff W[1]-hardness

treewidth t implies $n^{\Omega(t/\log t)}$ lower bound

treewidth t implies $n^{\Omega(t/\log t)}$ lower bound

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that ColSub(H) cannot be solved in time $n^{o(\ell)}$?

treewidth t implies $n^{\Omega(t/\log t)}$ lower bound

Do there exist **sparse** graphs H_{ℓ} of ℓ **edges** such that ColSub(H) cannot be solved in time $n^{o(\ell)}$?

Explicit construction of sparse expanders

Expanders have linear treewidth

Theorem

[Marx'10]

There is a sequence of **degree-3** graphs H_1, H_2, \cdots s.t. H_ℓ has ℓ edges and ColSub (H_ℓ) cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

k-Clique instance

n vertices*k* parts

k-Clique instance

 $N = k \cdot 3^{n/k}$ vertices

n vertices*k* parts

$N^{o(k)}$ k-Clique instance

 $N = k \cdot 3^{n/k}$ vertices

$2^{o(n)}$

3-Colouring instance

n vertices*k* parts

$N^{o(k)}$

k-Clique instance

 $N = k \cdot 3^{n/k}$ vertices

But this costs us something...

But this costs us something...

But this costs us something...

But this costs us something... Too many new vertices in V_2 !

But this costs us something... Too many new vertices in V_2 !

Routing in paths are highly **congested**!

Routing in paths are highly congested! Indeed, ColSub(path) is FPT.

H

Н

Н

#vertices in each colour $\leq n/s$

H

#vertices in each colour $\leq 5n/s$

H

#config vertices $N \le k \cdot 3^{5n/s}$

#config vertices $N \le k \cdot 3^{5n/s}$ s = k/g(k) gives $N^{k/g(k)}$ lower bound

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \cdots s.t. H_ℓ has ℓ edges and $ColSub(H_\ell)$ cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph *H* that

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \cdots s.t. H_ℓ has ℓ edges and $Colsub(H_\ell)$ cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph *H* that

(1) has $k = O(s \log s)$ vertices, (2) is of max degree 4, and (3) has a matching-linked set of size s.

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \cdots s.t. H_ℓ has ℓ edges and $Colsub(H_\ell)$ cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph *H* that

(1) has $k = O(s \log s)$ vertices, (2) is of max degree 4, and (3) has a matching-linked set of size s.

Our solution: Beneš network

coined by Václav Beneš in Bell Labs in 1964

[Marx'10]

There is a sequence of **degree-4** graphs H_1, H_2, \cdots s.t. H_ℓ has ℓ edges and $Colsub(H_\ell)$ cannot be solved in time $n^{o(\ell/\log \ell)}$ unless ETH fails.

It suffices to find a graph *H* that

(1) has $k = O(s \log s)$ vertices, (2) is of max degree 4, and (3) has a matching-linked set of size s.

Our solution: Beneš network

coined by Václav Beneš in Bell Labs in 1964

Fun fact: it is **NOT** an expander.

([Marx'10] and its subsequential simplification [C.S.-Marx-Pilipczuk-Souza'24] essentially require expanders)

[Marx'10]

[Marx'10]

$$B_1 = \begin{pmatrix} v_1 & \cdots & w_1 \\ v_2 & \cdots & w_2 \end{pmatrix}$$

[Marx'10]

$$B_{1}^{\uparrow} = \begin{cases} v_{1}^{\downarrow} & \downarrow & \downarrow \\ v_{2}^{\uparrow} & \downarrow & \downarrow \\ v_{2}^{\downarrow} & \downarrow & \downarrow \\ v_{3}^{\downarrow} & \downarrow & \downarrow \\ v_{4}^{\downarrow} & \downarrow & \downarrow \\ v_{5}^{\downarrow} & \downarrow \\ v_{5}^{\downarrow}$$

[Marx'10]

$$B_1^{\uparrow} =$$

$$B_1^{\downarrow} =$$

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

[Marx'10]

Link up $M = \{v_1v_7, v_2v_3, v_4v_6, v_5v_8\}$?

[Marx'10]

Link up $M = \{v_1v_7, v_2v_3, v_4v_6, v_5v_8\}$?

[Marx'10]

For any graph H, no $n^{o(\gamma(H))}$ algorithm for CoLSUB(H) unless ETH fails.

- $n^{o(d)}$, for **any** graph H with **average degree** d;
 - Asymptotically optimal.

- $n^{o(d)}$, for **any** graph H with **average degree** d;
 - Asymptotically optimal.
- $n^{o(k)}$, for almost every k-vertex graph H with polynomial average degree;
 - Asymptotically optimal.

- $n^{o(d)}$, for **any** graph H with **average degree** d;
 - Asymptotically optimal.
- $n^{o(k)}$, for almost every k-vertex graph H with polynomial average degree;
 - Asymptotically optimal.
- $n^{o(t/\log t)}$, for any graph with treewidth t = tw(H).
 - New proof to Marx's "Can you beat treewidth?" theorem.

Unless ETH fails, ColSub(H) cannot be solved in time

- $n^{o(d)}$, for any graph H with average degree d;
 - Asymptotically optimal.
- $n^{o(k)}$, for almost every k-vertex graph H with polynomial average degree;
 - Asymptotically optimal.
- $n^{o(t/\log t)}$, for any graph with treewidth t = tw(H).
 - New proof to Marx's "Can you beat treewidth?" theorem.

Implications to *induced subgraph counting*.

[Roth-Schmitt-Wellnitz'20, Döring-Marx-Wellnitz'24,25, Curticapean-Neuen'25]

Hardness of subgraph counting via linkage.

Hardness of subgraph counting via linkage.

Beneš network for $n^{\Omega(k/\log k)}$ lower bound.

Hardness of subgraph counting via linkage.

Beneš network for $n^{\Omega(k/\log k)}$ lower bound.

Hardness of general patterns via **linkage capacity**.

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? $(n^{\Omega(\mathsf{tw}(H))})$ lower bound?)

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? $(n^{\Omega(tw(H))})$ lower bound?)

Design algorithms based on linkage capacity? ($n^{O(\gamma(H))}$ algorithm?)

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? $(n^{\Omega(tw(H))})$ lower bound?)

Design algorithms based on linkage capacity? $(n^{O(\gamma(H))})$ algorithm?)

Novel usage of communication networks in complexity theory?

- extension complexity
 [Göös-Jain-Watson'18]
- PCP [Bafna-Minzer-Vyas-Yun'25].

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? $(n^{\Omega(tw(H))})$ lower bound?)

Design algorithms based on linkage capacity? $(n^{O(\gamma(H))})$ algorithm?)

Novel usage of communication networks in complexity theory?

- extension complexity
 [Göös-Jain-Watson'18]
- PCP [Bafna-Minzer-Vyas-Yun'25].

New proofs of $(t/\log t)$ -like lower bounds in other settings?

• **AC**⁰ lower bounds for subgraph isomorphism?

[Li-Razborov-Rossman'17]

Close the gap between $n^{\Omega(k/\log k)}$ lower bound and $n^{O(k)}$ algorithms?

Can you beat treewidth? $(n^{\Omega(tw(H))})$ lower bound?)

Design algorithms based on linkage capacity? $(n^{O(\gamma(H))})$ algorithm?)

Novel usage of communication networks in complexity theory?

- extension complexity
 [Göös-Jain-Watson'18]
- PCP [Bafna-Minzer-Vyas-Yun'25].

New proofs of $(t/\log t)$ -like lower bounds in other settings?

• **AC**⁰ lower bounds for subgraph isomorphism?

[Li-Razborov-Rossman'17]