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Canonical labeling

We consider n-vertex graphs.

An injective function ¢¢ : V(G) — {1,...,n} is a
canonical labeling if

G = H if and only if G(¢) = H!(H),

where G(©) is the isomorphic image of G under ¢(G).
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Canonical labeling of almost all graphs

Theorem (Babai, Erdés, Selkow '80)

lg(v) = (degG v, {degc U}ueN(v)>

is canonical labeling for almost all graphs G.
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RANDOM GRAPH ISOMORPHISM*

LASZLO BABAIY, PAUL ERDOS: AND STANLEY M. SELKOWS$

» Set r = |3log, n] and observe that, for almost all
graphs, r largest degrees occur exactly once.

» Order vertices in the descending order of their degrees.

» Code every vertex v > r with respect to its
adjacenciesto 1,...,r.

the simplicity of our algorithm can hardly be improved on, and it may be worth noting
that still, such an algorithm canonizes almost all graphs.
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Isomorphism testing

» If G and H are labeled canonically, it takes linear time
to decide whether G = H.
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Isomorphism testing

» If G and H are labeled canonically, it takes linear time
to decide whether G = H.

» There exists a linear time algorithm that decides
whether G = H for almost all G and all H.

» Babai '16: Graph Isomorphism is solvable in time
exp(log®® n).
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Random graphs

G(n, p):
» {1,...,n} — set of vertices;

» edges appear independently with probability p = p(n).
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Random graphs

G(n, p):
» {1,...,n} — set of vertices;

» edges appear independently with probability p = p(n).

G(n,1/2) — uniformly random graph
BES '80: There exists a linear-time algorithm that
whp labels canonically G(n,1/2).
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Other p?

Existence of a polynomial-time algorithm that labels
canonically G(n, p) whp:

» BES '80 (extension): 112 < p < 1;

> Bollobas '82: ;2 < p < Gn~11/12%;

» Czajka, Pandurangan '08: In"n_ o p < %;

nininn

» Linial, Mosheiff '17: % <L p< %
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nininn

» Linial, Mosheiff '17: % <L p< %

p=0(1/n)?
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Universal algorithm

Theorem (Verbitsky, Z)

There exists a polynomial-time algorithm A such that, for
every p = p(n) € [0,1], whp A labels canonically G(n, p).!

!Proved independently by Anastos, Kwan, Moore (STOC '25).
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Universal algorithm

Theorem (Verbitsky, Z)

There exists a polynomial-time algorithm A such that, for
every p = p(n) € [0,1], whp A labels canonically G(n, p).!

When p = O(1/n), it takes time O(nlog n)
to label canonically G(n, p) whp.

'Proved independently by Anastos, Kwan, Moore (STOC '25).
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Color refinement
Step 1. Gi(v) = degv.

Refinement step i: Ci(v) = (C,'_1(V), {{Ci—l(u)}}ueN(v))
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Refinement step i: Ci(v) = (C,-_l(v), {{Ci—l(u)}}ueN(v)>
If color classes remain the same after a refinement step,
CR terminates and outputs {C(v),v € V(G)}.
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Color refinement
G is CR-discrete, if C(u) # C(v) for all u # v.
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Color refinement
G is CR-discrete, if C(u) # C(v) for all u # v.

If G is CR-discrete, then CR produces a canonical labeling.

Babai, Erdés, Selkow '80: G(n,1/2) is CR-discrete whp.
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Universal cover

G — connected graph
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Universal cover

G — connected graph
H covers G, if 3 a surjective homomorphism H % G:

Vv e V(H)  ¢|n) is a bijection.
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Universal cover

G — connected graph

H covers G, if 3 a surjective homomorphism H % G:

Vv e V(H)  ¢|n) is a bijection.

UC is a universal cover of G if it covers every connected
covering graph of G (equivalently, a tree that covers G)
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Universal cover
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Universal cover
G =cr H, if {C(u),ue V(G)} ={C(v),ve V(H)}
Angluin '80: G =cp H < U°® = UV,
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Universal cover

G=cr H, if {C(u),uec V(G)} ={C(v),ve V(H}
Angluin '80: G =cp H < U°® = UV,

Corollary

» If Ty, Ty are trees, then T1 = Ty, & T =cr Ts.

» If Gy, G, are unicyclic graphs of the same size,
then G = G, & Gy =cr Go.




Evolution of the random graph

Erdos, Rényi '60; Bollobas '84; tuczak '90

» If pn =1+ w(n"/3), then whp G(n, p) has one
(giant) complex component.

» If pn =14 O(n~%/3), then with a non-vanishing
probability G(n, p) has several complex components.

» If pn =1 —w(n"1/3), then whp G(n, p) does not have
complex components.
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Colour Refinement of the random graph
Main Lemma

Let
» p= 0O(1/n),
» H, be the union of complex components in G(n, p),
» C, be the 2-core of H,,.

Then whp Vu,v € V(C,)
C(u) = C(v) = u, v are interchangeable.
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Thank you very much!
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