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Canonical labeling

We consider n-vertex graphs.

An injective function `G : V (G )→ {1, . . . , n} is a
canonical labeling if

G ∼= H if and only if G `(G ) = H`(H),

where G `(G ) is the isomorphic image of G under `(G ).
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Canonical labeling of almost all graphs

Theorem (Babai, Erdős, Selkow ’80)

`G (v) =
(

degG v , {{degG u}}u∈N(v)

)
is canonical labeling for almost all graphs G.
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I Set r = b3 log2 nc and observe that, for almost all
graphs, r largest degrees occur exactly once.

I Order vertices in the descending order of their degrees.

I Code every vertex v > r with respect to its
adjacencies to 1, . . . , r .
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Isomorphism testing

I If G and H are labeled canonically, it takes linear time
to decide whether G ∼= H .

I There exists a linear time algorithm that decides
whether G ∼= H for almost all G and all H .

I Babai ’16: Graph Isomorphism is solvable in time
exp(logO(1) n).
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Random graphs

G (n, p):

I {1, . . . , n} — set of vertices;

I edges appear independently with probability p = p(n).

G (n, 1/2) — uniformly random graph

BES ’80: There exists a linear-time algorithm that

whp labels canonically G (n, 1/2).
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Other p?

Existence of a polynomial-time algorithm that labels
canonically G (n, p) whp:

I BES ’80 (extension): ln n
n1/5
� p ≤ 1

2 ;

I Bollobás ’82: C1
ln n
n ≤ p ≤ C2n

−11/12;

I Czajka, Pandurangan ’08: ln4 n
n ln ln n � p ≤ 1

2 ;

I Linial, Mosheiff ’17: 1
n � p ≤ 1

2 .

p = O(1/n)?
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Universal algorithm

Theorem (Verbitsky, Z)

There exists a polynomial-time algorithm A such that, for
every p = p(n) ∈ [0, 1], whp A labels canonically G (n, p).1

When p = O(1/n), it takes time O(n log n)

to label canonically G (n, p) whp.

1Proved independently by Anastos, Kwan, Moore (STOC ’25).
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Color refinement

Step 1: C1(v) = degv .

Refinement step i : Ci(v) =
(
Ci−1(v), {{Ci−1(u)}}u∈N(v)

)

If color classes remain the same after a refinement step,
CR terminates and outputs {{C (v), v ∈ V (G )}}.
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Color refinement

G is CR-discrete, if C (u) 6= C (v) for all u 6= v .

If G is CR-discrete, then CR produces a canonical labeling.

Babai, Erdős, Selkow ’80: G (n, 1/2) is CR-discrete whp.
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Universal cover

G — connected graph

H covers G , if ∃ a surjective homomorphism H
ϕ→ G :

∀v ∈ V (H) ϕ|N(v) is a bijection.

UG is a universal cover of G if it covers every connected
covering graph of G (equivalently, a tree that covers G )
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Universal cover
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Universal cover

G ≡CR H , if {{C (u), u ∈ V (G )}} = {{C (v), v ∈ V (H)}}
Angluin ’80: G ≡CR H ⇔ UG ∼= UH .

Corollary

I If T1,T2 are trees, then T1
∼= T2 ⇔ T1 ≡CR T2.

I If G1,G2 are unicyclic graphs of the same size,

then G1
∼= G2 ⇔ G1 ≡CR G2.
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Evolution of the random graph

Erdős, Rényi ’60; Bollobás ’84;  Luczak ’90

I If pn = 1 + ω(n−1/3), then whp G (n, p) has one
(giant) complex component.

I If pn = 1± O(n−1/3), then with a non-vanishing
probability G (n, p) has several complex components.

I If pn = 1− ω(n−1/3), then whp G (n, p) does not have
complex components.
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Colour Refinement of the random graph

Main Lemma

Let
I p = O(1/n),

I Hn be the union of complex components in G (n, p),

I Cn be the 2-core of Hn.

Then whp ∀u, v ∈ V (Cn)

C (u) = C (v) ⇒ u, v are interchangeable.
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