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Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph 
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Input: a graph 𝐺, integer 𝑘

Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph 

(i.e., each connected component must be a clique.)

Fixed-parameter perspective.

- Straightforward O*(3𝑘) time algorithm.

- O*(1.618𝑘) time possible [Böcker, 2012]

- Kernel with 2𝑘 vertices (compressed equivalent 
instance) [Chen & Meng, 2012].

- FPT in parameter twin-cover [Italiano et al., 2023]



Cluster Editing

Input: a graph 𝐺, integer 𝑘

Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph 

(i.e., each connected component must be a clique.)

On specific graph classes:

- NP-hard on planar unit disk graphs of max degree 4
[Komusiewicz & Ullman, 2012][Ochs, 2023]

- Polytime on unit interval graphs [Mannaa, 2010]

- Cluster Deletion received more attention
- studied on unit disk graphs, split graphs,...
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p-Cluster Editing

Input: a graph 𝐺, integers 𝑘, 𝑝

Goal: insert/delete at most 𝑘 edges to obtain a cluster 
graph with exactly 𝑝 connected components

- NP-hard already when 𝑝 = 2 [Shamir  et al., 2004]

- Algorithm in time 2𝑂( 𝑝𝑘)𝑝𝑜𝑙𝑦(𝑛), tight under 
Exponential Time Hypothesis (ETH) [Fomin et al,2014]

- Admits a (𝑝 + 2)𝑘 + 𝑝 kernel  [Guo,2009]



Cluster Editing on Cographs

• Cograph = 𝑃4-free graph

• Cograph = can be built using operations:
• creating a single vertex

• taking disjoint union of two cographs

• taking full join of two cographs

• Cluster Deletion is in P for cographs!  [Gao et al., 2013]
• Take largest clique, make it a cluster, repeat

• Cluster Insertion is trivially in P.

• Cluster Editing = OPEN



Cographs and cotrees



• Why Cluster Editing on cographs?
• Distance to a graph class

• Cographs are “almost” cluster graphs – but how far?

• Communities usually cluster graphs, but sometimes 
cographs.

• Applications in Computational Biology, evolutionary 
history = cotree = cograph, but people use clustering



Our results

1. Cluster Editing is NP-complete on cographs.

2. 𝑝-Cluster Editing is NP-complete on cographs, and 
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width.  Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time 
algorithm.  Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time 
is possible.  

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Also known as Trivially Perfect Graphs (TPG)







Unary Perfect Bin Packing

Input: multiset of unary-encoded integers 𝐴 = {𝑎1, … , 𝑎𝑛}, 
bin capacity 𝐶, bin count 𝑝.

Question: can we assign items of 𝐴 to 𝑝 bins so that they 
each sum to exactly 𝐶.



Unary Perfect Bin Packing

Input: multiset of unary-encoded integers 𝐴 = {𝑎1, … , 𝑎𝑛}, 
bin capacity 𝐶, bin count 𝑝.

Question: can we assign items of 𝐴 to 𝑝 bins so that they 
each sum to exactly 𝐶.



Unary Perfect Bin Packing

Input: multiset of unary-encoded integers 𝐴 = {𝑎1, … , 𝑎𝑛}, 
bin capacity 𝐶, bin count 𝑝.

Question: can we assign items of 𝐴 to 𝑝 bins so that they 
each sum to exactly 𝐶.

In [Jansen et al., 2013], the variant where each bin sums to 
at most 𝐶 is: 

(1) NP-hard; 

(2) W[1]-hard in parameter 𝑝;  (probably no 𝑓(𝑝)𝑛𝑐 time) 

(3) no 𝑛𝑜(𝑝/ log 𝑝) time algorithm under the ETH.

We show that the same holds for the Perfect variant.

















Main ideas

Huge cliques separated => 𝑝 clusters

Each little clique 𝐴𝑖 goes with a huge clique 𝐵𝑗

Only relevant editing cost = insertions between 𝐴𝑖’s 
in same cluster.

If 𝐴1, … , 𝐴𝑘 are together in same cluster, insertions 
needed = 𝑎1𝑎2 + 𝑎1𝑎3 +⋯+ 𝑎𝑘−1𝑎𝑘.

To prove: sum of edit costs is minimized if each 
cluster has an equal number of 𝐴𝑖 vertices
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Clique-width

Clique-width uses colored vertices.

A graph 𝐺 has clique-width 𝑘 if it can be constructed 
using 𝑘 colors and the following operations:

- create a graph with a single vertex colored 𝑖

- disjoint union of two colored graphs

- recolor all vertices with color 𝑖 to color 𝑗

- add all edges between vertices of distinct color 𝑖 and 𝑗





Suppose 𝐺 is constructed using 𝑘 colors.

- for each graph encountered during the 
construction, consider all 𝑝 × 𝑘 matrices 𝑀

- 𝑀[𝑖, 𝑗] = 𝑡 means “the 𝑖-th cluster must have 
exactly 𝑡 vertices of color 𝑗” (note, 𝑡 ≤ 𝑛)

- 𝑜𝑝𝑡(𝑀) = min # edges to edit to achieve  a cluster 
graph that meets all the 𝑀[𝑖, 𝑗] requirements.



Suppose 𝐺 is constructed using 𝑘 colors.

- for each graph encountered during the 
construction, consider all 𝑝 × 𝑘 matrices 𝑀

- 𝑀[𝑖, 𝑗] = 𝑡 means “the 𝑖-th cluster must have 
exactly 𝑡 vertices of color 𝑗” (note, 𝑡 ≤ 𝑛)

- 𝑜𝑝𝑡(𝑀) = min # edges to edit to achieve  a cluster 
graph that meets all the 𝑀[𝑖, 𝑗] requirements.

- Compute 𝑜𝑝𝑡(𝑀) for every possible 𝑀 and every 
graph encountered.

- There are 𝑛𝑐𝑤⋅𝑝 possible 𝑀’s. 

- Dynamic programming gives 𝑛2𝑐𝑤⋅𝑝+4
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{𝑃4, 𝐶4}-free graphs

Also known as Trivially Perfect Graphs (TPG).

Can be built with the operations:

- create a single vertex

- disjoint union of TPGs.

- add a universal vertex (adjacent to all vertices 
currently there)



{𝑃4, 𝐶4}-free graphs

Idea: when adding a universal vertex 𝑣,

- Take an optimal solution of 𝐺 – 𝑣.

- Add 𝑣 in the largest cluster (minimizes deletions)



{𝑃4, 𝐶4}-free graphs

Idea: when adding a universal vertex 𝑣,

- Take an optimal solution of 𝐺 – 𝑣.

- Add 𝑣 in the largest cluster (minimizes deletions)

- Problem: optimal solution may not be good later on.  



{𝑃4, 𝐶4}-free graphs

Idea: when adding a universal vertex 𝑣,

- Take an optimal solution of 𝐺 – 𝑣.

- Add 𝑣 in the largest cluster (minimizes deletions)

- Problem: optimal solution may not be good later on.

- For all sizes 𝑞, compute 

𝑜𝑝𝑡(𝐺, 𝑞) = min # editions in 𝐺 s.t. the largest cluster 
has exactly 𝑞 vertices.

- Easy to update when adding 𝑣, just use 𝑜𝑝𝑡(𝐺 − 𝑣, 𝑞)



{𝑃4, 𝐶4}-free graphs

- Difficult part: update tables when taking disjoint 
unions, i.e., 𝐺 = 𝐺1 ∪ 𝐺2.

- 𝑜𝑝𝑡(𝐺, 𝑞) = min # editions in 𝐺 s.t. the largest cluster 
has exactly 𝑞 vertices.



{𝑃4, 𝐶4}-free graphs

- Difficult part: update tables when taking disjoint 
unions, i.e., 𝐺 = 𝐺1 ∪ 𝐺2.

- 𝑜𝑝𝑡(𝐺, 𝑞) = min # editions in 𝐺 s.t. the largest cluster 
has exactly 𝑞 vertices.

- Argue that we can just take

𝑜𝑝𝑡 𝐺, 𝑞 = 𝑚𝑖𝑛𝑞=𝑞1+𝑞2𝑜𝑝𝑡 𝐺1, 𝑞1 + 𝑜𝑝𝑡 𝐺2, 𝑞2 + 𝛿

i.e., it is safe to merge the largest clusters of 𝐺1 and 𝐺2



Future directions

• Is 𝑝-Cluster Editing in P for TPGs?

• 𝑐𝑤 is a bad parameter for Cluster Editing. 
Treewidth?  Modular-width?  Other?

• Challenge: get a dichotomy theorem to characterize 
graph classes on which Cluster Editing/Deletion is 
in P, or NP-hard.
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