
Cluster Editing on Cographs
and Related Classes

Manuel Lafond Université de Sherbrooke

Alitzel Lopez-Sanchez Université de Sherbrooke

Weidong Luo Université de Sherbrooke

Cluster Editing

Input: a graph 𝐺, integer 𝑘

Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph

(i.e., each connected component must be a clique.)

Cluster Editing

Input: a graph 𝐺, integer 𝑘

Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph

(i.e., each connected component must be a clique.)

Cluster Editing

Input: a graph 𝐺, integer 𝑘

Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph

(i.e., each connected component must be a clique.)

Fixed-parameter perspective.

- Straightforward O*(3𝑘) time algorithm.

- O*(1.618𝑘) time possible [Böcker, 2012]

- Kernel with 2𝑘 vertices (compressed equivalent
instance) [Chen & Meng, 2012].

- FPT in parameter twin-cover [Italiano et al., 2023]

Cluster Editing

Input: a graph 𝐺, integer 𝑘

Goal: insert/delete ≤ 𝑘 edges to obtain a cluster graph

(i.e., each connected component must be a clique.)

On specific graph classes:

- NP-hard on planar unit disk graphs of max degree 4
[Komusiewicz & Ullman, 2012][Ochs, 2023]

- Polytime on unit interval graphs [Mannaa, 2010]

- Cluster Deletion received more attention
- studied on unit disk graphs, split graphs,...

p-Cluster Editing

Input: a graph 𝐺, integers 𝑘, 𝑝

Goal: insert/delete at most 𝑘 edges to obtain a cluster
graph with exactly 𝑝 connected components

p-Cluster Editing

Input: a graph 𝐺, integers 𝑘, 𝑝

Goal: insert/delete at most 𝑘 edges to obtain a cluster
graph with exactly 𝑝 connected components

p-Cluster Editing

Input: a graph 𝐺, integers 𝑘, 𝑝

Goal: insert/delete at most 𝑘 edges to obtain a cluster
graph with exactly 𝑝 connected components

p-Cluster Editing

Input: a graph 𝐺, integers 𝑘, 𝑝

Goal: insert/delete at most 𝑘 edges to obtain a cluster
graph with exactly 𝑝 connected components

- NP-hard already when 𝑝 = 2 [Shamir et al., 2004]

- Algorithm in time 2𝑂(𝑝𝑘)𝑝𝑜𝑙𝑦(𝑛), tight under
Exponential Time Hypothesis (ETH) [Fomin et al,2014]

- Admits a (𝑝 + 2)𝑘 + 𝑝 kernel [Guo,2009]

Cluster Editing on Cographs

• Cograph = 𝑃4-free graph

• Cograph = can be built using operations:
• creating a single vertex

• taking disjoint union of two cographs

• taking full join of two cographs

• Cluster Deletion is in P for cographs! [Gao et al., 2013]
• Take largest clique, make it a cluster, repeat

• Cluster Insertion is trivially in P.

• Cluster Editing = OPEN

Cographs and cotrees

• Why Cluster Editing on cographs?
• Distance to a graph class

• Cographs are “almost” cluster graphs – but how far?

• Communities usually cluster graphs, but sometimes
cographs.

• Applications in Computational Biology, evolutionary
history = cotree = cograph, but people use clustering

Our results

1. Cluster Editing is NP-complete on cographs.

2. 𝑝-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Also known as Trivially Perfect Graphs (TPG)

Unary Perfect Bin Packing

Input: multiset of unary-encoded integers 𝐴 = {𝑎1, … , 𝑎𝑛},
bin capacity 𝐶, bin count 𝑝.

Question: can we assign items of 𝐴 to 𝑝 bins so that they
each sum to exactly 𝐶.

Unary Perfect Bin Packing

Input: multiset of unary-encoded integers 𝐴 = {𝑎1, … , 𝑎𝑛},
bin capacity 𝐶, bin count 𝑝.

Question: can we assign items of 𝐴 to 𝑝 bins so that they
each sum to exactly 𝐶.

Unary Perfect Bin Packing

Input: multiset of unary-encoded integers 𝐴 = {𝑎1, … , 𝑎𝑛},
bin capacity 𝐶, bin count 𝑝.

Question: can we assign items of 𝐴 to 𝑝 bins so that they
each sum to exactly 𝐶.

In [Jansen et al., 2013], the variant where each bin sums to
at most 𝐶 is:

(1) NP-hard;

(2) W[1]-hard in parameter 𝑝; (probably no 𝑓(𝑝)𝑛𝑐 time)

(3) no 𝑛𝑜(𝑝/ log 𝑝) time algorithm under the ETH.

We show that the same holds for the Perfect variant.

Main ideas

Huge cliques separated => 𝑝 clusters

Each little clique 𝐴𝑖 goes with a huge clique 𝐵𝑗

Only relevant editing cost = insertions between 𝐴𝑖’s
in same cluster.

If 𝐴1, … , 𝐴𝑘 are together in same cluster, insertions
needed = 𝑎1𝑎2 + 𝑎1𝑎3 +⋯+ 𝑎𝑘−1𝑎𝑘.

To prove: sum of edit costs is minimized if each
cluster has an equal number of 𝐴𝑖 vertices

Our results

1. Cluster Editing is NP-complete on cographs.

2. 𝑝-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Our results

1. Cluster Editing is NP-complete on cographs.

2. 𝑝-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Our results

1. Cluster Editing is NP-complete on cographs.

2. p-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Clique-width

Clique-width uses colored vertices.

A graph 𝐺 has clique-width 𝑘 if it can be constructed
using 𝑘 colors and the following operations:

- create a graph with a single vertex colored 𝑖

- disjoint union of two colored graphs

- recolor all vertices with color 𝑖 to color 𝑗

- add all edges between vertices of distinct color 𝑖 and 𝑗

Suppose 𝐺 is constructed using 𝑘 colors.

- for each graph encountered during the
construction, consider all 𝑝 × 𝑘 matrices 𝑀

- 𝑀[𝑖, 𝑗] = 𝑡 means “the 𝑖-th cluster must have
exactly 𝑡 vertices of color 𝑗” (note, 𝑡 ≤ 𝑛)

- 𝑜𝑝𝑡(𝑀) = min # edges to edit to achieve a cluster
graph that meets all the 𝑀[𝑖, 𝑗] requirements.

Suppose 𝐺 is constructed using 𝑘 colors.

- for each graph encountered during the
construction, consider all 𝑝 × 𝑘 matrices 𝑀

- 𝑀[𝑖, 𝑗] = 𝑡 means “the 𝑖-th cluster must have
exactly 𝑡 vertices of color 𝑗” (note, 𝑡 ≤ 𝑛)

- 𝑜𝑝𝑡(𝑀) = min # edges to edit to achieve a cluster
graph that meets all the 𝑀[𝑖, 𝑗] requirements.

- Compute 𝑜𝑝𝑡(𝑀) for every possible 𝑀 and every
graph encountered.

- There are 𝑛𝑐𝑤⋅𝑝 possible 𝑀’s.

- Dynamic programming gives 𝑛2𝑐𝑤⋅𝑝+4

Our results

1. Cluster Editing is NP-complete on cographs.

2. p-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Our results

1. Cluster Editing is NP-complete on cographs.

2. p-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

Our results

1. Cluster Editing is NP-complete on cographs.

2. p-Cluster Editing is NP-complete on cographs, and
W[1]-hard in parameter 𝑝 on cographs.

Let 𝑐𝑤 denote clique-width. Cographs have 𝑐𝑤 = 2.

3. 𝑝-Cluster Editing admits a 𝑛𝑂(𝑐𝑤 𝑝) time
algorithm. Under the ETH, no 𝑛𝑜(𝑐𝑤 𝑝/ log 𝑝) time
is possible.

4. For fixed 𝑝, 𝑝-Cluster Editing on cographs is in P.

5. Cluster Editing is in P on {𝑃4, 𝐶4}-free graphs.

{𝑃4, 𝐶4}-free graphs

Also known as Trivially Perfect Graphs (TPG).

Can be built with the operations:

- create a single vertex

- disjoint union of TPGs.

- add a universal vertex (adjacent to all vertices
currently there)

{𝑃4, 𝐶4}-free graphs

Idea: when adding a universal vertex 𝑣,

- Take an optimal solution of 𝐺 – 𝑣.

- Add 𝑣 in the largest cluster (minimizes deletions)

{𝑃4, 𝐶4}-free graphs

Idea: when adding a universal vertex 𝑣,

- Take an optimal solution of 𝐺 – 𝑣.

- Add 𝑣 in the largest cluster (minimizes deletions)

- Problem: optimal solution may not be good later on.

{𝑃4, 𝐶4}-free graphs

Idea: when adding a universal vertex 𝑣,

- Take an optimal solution of 𝐺 – 𝑣.

- Add 𝑣 in the largest cluster (minimizes deletions)

- Problem: optimal solution may not be good later on.

- For all sizes 𝑞, compute

𝑜𝑝𝑡(𝐺, 𝑞) = min # editions in 𝐺 s.t. the largest cluster
has exactly 𝑞 vertices.

- Easy to update when adding 𝑣, just use 𝑜𝑝𝑡(𝐺 − 𝑣, 𝑞)

{𝑃4, 𝐶4}-free graphs

- Difficult part: update tables when taking disjoint
unions, i.e., 𝐺 = 𝐺1 ∪ 𝐺2.

- 𝑜𝑝𝑡(𝐺, 𝑞) = min # editions in 𝐺 s.t. the largest cluster
has exactly 𝑞 vertices.

{𝑃4, 𝐶4}-free graphs

- Difficult part: update tables when taking disjoint
unions, i.e., 𝐺 = 𝐺1 ∪ 𝐺2.

- 𝑜𝑝𝑡(𝐺, 𝑞) = min # editions in 𝐺 s.t. the largest cluster
has exactly 𝑞 vertices.

- Argue that we can just take

𝑜𝑝𝑡 𝐺, 𝑞 = 𝑚𝑖𝑛𝑞=𝑞1+𝑞2𝑜𝑝𝑡 𝐺1, 𝑞1 + 𝑜𝑝𝑡 𝐺2, 𝑞2 + 𝛿

i.e., it is safe to merge the largest clusters of 𝐺1 and 𝐺2

Future directions

• Is 𝑝-Cluster Editing in P for TPGs?

• 𝑐𝑤 is a bad parameter for Cluster Editing.
Treewidth? Modular-width? Other?

• Challenge: get a dichotomy theorem to characterize
graph classes on which Cluster Editing/Deletion is
in P, or NP-hard.

	Diapositive 1 Cluster Editing on Cographs and Related Classes
	Diapositive 2
	Diapositive 3
	Diapositive 4
	Diapositive 5
	Diapositive 6
	Diapositive 7
	Diapositive 8
	Diapositive 9
	Diapositive 10 Cluster Editing on Cographs
	Diapositive 12 Cographs and cotrees
	Diapositive 13
	Diapositive 15 Our results
	Diapositive 16
	Diapositive 17
	Diapositive 18
	Diapositive 19
	Diapositive 20
	Diapositive 21
	Diapositive 22
	Diapositive 23
	Diapositive 24
	Diapositive 25
	Diapositive 26
	Diapositive 27
	Diapositive 28 Main ideas
	Diapositive 29
	Diapositive 30
	Diapositive 31 Our results
	Diapositive 32 Our results
	Diapositive 33 Our results
	Diapositive 34 Clique-width
	Diapositive 35
	Diapositive 36
	Diapositive 37
	Diapositive 38
	Diapositive 39
	Diapositive 40 Our results
	Diapositive 41 Our results
	Diapositive 42 Our results
	Diapositive 43 accolade gauche maj P 4,maj C 4 accolade droite -free graphs
	Diapositive 44 accolade gauche maj P 4,maj C 4 accolade droite -free graphs
	Diapositive 45 accolade gauche maj P 4,maj C 4 accolade droite -free graphs
	Diapositive 46 accolade gauche maj P 4,maj C 4 accolade droite -free graphs
	Diapositive 47 accolade gauche maj P 4,maj C 4 accolade droite -free graphs
	Diapositive 48 accolade gauche maj P 4,maj C 4 accolade droite -free graphs
	Diapositive 49 Future directions

