CMSO-transducing tree-like graph decompositions

R. CAMPBELL, <u>B. GUILLON</u>, M.M. KANTÉ, E.J. KIM, N. KÖHLER

March 6, 2025 STACS'25

Answer: decompose them, recursively.

Answer: decompose them, recursively

deal with simple graphs;

combine the results.

Answer: decompose them, recursively

How to decompose graphs?

- deal with simple graphs;
- combine the results.

Answer: decompose them, recursively

How to decompose graphs?

- tree decomposition
- clique decomposition
- modular decomposition
- split decomposition

. . .

deal with simple graphs;

combine the results.

Answer: decompose them, recursively

How to decompose graphs?

- tree decomposition
- clique decomposition
- modular decomposition
- split decomposition

. . .

Each time, the decomposition is a tree.

- deal with simple graphs;
- combine the results.

Answer: decompose them, recursively

deal with simple graphs;

combine the results.

How to decompose graphs?

- tree decomposition
- clique decomposition
- modular decomposition
- split decomposition

Each time, the decomposition is a tree.

In many cases, the tree has vertices as leaves, and labeled inner nodes.

Answer: decompose them, recursively

deal with simple graphs;

combine the results.

How to decompose graphs?

- tree decomposition
- clique decomposition
- modular decomposition
- split decomposition

Each time, the decomposition is a tree.

In many cases, the tree has vertices as leaves, and labeled inner nodes.

- investigation of combinatorial properties;
- characterize classes of graphs;
- algorithm design (e.g., dynamic programming).

- investigation of combinatorial properties;
- characterize classes of graphs;
- ▶ algorithm design (*e.g.*, dynamic programming).

General framework

On graphs of bounded treewidth,

- Thm (Courcelle 90) every CMSO-definable property can be recognized by a tree automaton over the tree decomposition.
- Thm (Bodlaender 93) tree decomposition of bounded width can be obtained in linear-time.
 - Corollary CMSO model checking can be done in linear time.

- investigation of combinatorial properties;
- characterize classes of graphs;
- ▶ algorithm design (*e.g.*, dynamic programming).

- investigation of combinatorial properties;
- characterize classes of graphs;
- ► algorithm design (*e.g.*, dynamic programming).

Courcelle's conjecture

question: On graphs of bounded treewidth is every recognizable property CMSO-definable?

Courcelle's conjecture

question: On graphs of bounded treewidth is every recognizable property CMSO-definable?

main difficulty: the input is the graph, and not the tree decomposition

main difficulty: the input is the graph, and not the tree decomposition

strategy (Courcelle 91):

- 1. obtain the decomposition within CMSO;
- 2. encode the recognizability using CMSO-formulas.

main difficulty: the input is the graph, and not the tree decomposition

strategy (Courcelle 91):

- 1. obtain the decomposition within CMSO
- 2. encode the recognizability using CMSO-formulas.

by mean of CMSO-transductions

main difficulty: the input is the graph, and not the tree decomposition

strategy (Courcelle 91):

- 1. obtain the decomposition within CMSO
- 2. encode the recognizability using CMSO-formulas.

by mean of CMSO-transductions

Theorem (Bojańczyk&Pilipczuk 16)

On graphs of bounded treewidth, recognizability = CMSO-definability.

key ingredient: a CMSO-transduction producing the decomposition

main difficulty: the input is the graph, and not the tree decomposition

strategy (Courcelle 91):

- 1. obtain the decomposition within CMSO
- 2. encode the recognizability using CMSO-formulas.

by mean of CMSO-transductions

Theorem (Bojańczyk&Pilipczuk 16)

On graphs of bounded treewidth, recognizability = CMSO-definability.

key ingredient: a CMSO-transduction producing the decomposition

 Σ and $\Gamma:$ two relationnal signatures. E.g.,

- Σ : the graph vocabulary {edge} -- edge(x, y) \equiv "x-y is an edge"
- **F:** the tree-dec vocabulary {parent, bag} parent(x, y); bag(v, x)

 Σ and $\Gamma:$ two relationnal signatures. E.g.,

 Σ : the graph vocabulary {edge} — edge(x, y) \equiv "x-y is an edge"

F: the tree-dec vocabulary {parent, bag} — parent(x, y); bag(v, x)

Definition (CMSO-transduction)

A Σ -to- Γ CMSO-transductions is a composition of:

domain restriction: filter the input structures (partial identity); universe restriction: subset the universe; interpretation: interpret each relation name from Γ in Σ ; using CMSO formula

using CMSO-formulas.

 Σ and $\Gamma:$ two relationnal signatures. E.g.,

 Σ : the graph vocabulary {edge} — edge(x, y) \equiv "x-y is an edge"

F: the tree-dec vocabulary {parent, bag} — parent(x, y); bag(v, x)

Definition (CMSO-transduction)

A Σ -to- Γ CMSO-transductions is a composition of:

copying: make *k* copies of the universe;

domain restriction: filter the input structures (partial identity); universe restriction: subset the universe; interpretation: interpret each relation name from Γ in Σ ;

using CMSO-formulas.

 Σ and $\Gamma:$ two relationnal signatures. E.g.,

 Σ : the graph vocabulary {edge} -- edge(x, y) \equiv "x-y is an edge"

F: the tree-dec vocabulary {parent, bag} — parent(x, y); bag(v, x)

Definition (CMSO-transduction)

A Σ -to- Γ CMSO-transductions is a composition of: **colouring:** guess a finite family of unary relations; **copying:** make k copies of the universe; **domain restriction:** filter the input structures (partial identity); **universe restriction:** subset the universe; **interpretation:** interpret each relation name from Γ in Σ ;

using CMSO-formulas.

 Σ and $\Gamma:$ two relationnal signatures. E.g.,

 Σ : the graph vocabulary {edge} -- edge(x, y) \equiv "x-y is an edge"

F: the tree-dec vocabulary {parent, bag} — parent(x, y); bag(v, x)

Definition (CMSO-transduction)

A Σ -to- Γ CMSO-transductions is a composition of: **colouring:** guess a finite family of unary relations; **copying:** make k copies of the universe; **domain restriction:** filter the input structures (partial identity); **universe restriction:** subset the universe; **interpretation:** interpret each relation name from Γ in Σ ;

using CMSO-formulas.

Theorem (Backward Translation Theorem)

 $\tau^{-1}(Y)$ is CMSO-definable for τ , a Σ -to- Γ CMSO-transduction and Y, a CMSO-definable set of Γ -structures.

For which classes of graphs, definability = recognizability?

Which decompositions can be CMSO-transduced?

CMSO-definability = recognizability for graphs of:

- ► Thm (Rabin 69) treewidth 1 (*i.e.*, trees, even infinite)
- Thm (Bojańczyk&Pilipczuk 16) bounded treewidth
- Thm (Bojańczyk,Grohe&Pilipczuk 20) bounded linear cliquewidth

For which classes of graphs, definability = recognizability?

Which decompositions can be CMSO-transduced?

CMSO-definability = recognizability for graphs of:

- ► Thm (Rabin 69) treewidth 1 (*i.e.*, trees, even infinite)
- Thm (Bojańczyk&Pilipczuk 16) bounded treewidth
- Thm (Bojańczyk,Grohe&Pilipczuk 20) bounded linear cliquewidth

and, if using order-invariant CMSO (more expressive than CMSO):

▶ Thm (Courcelle 96) on cographs (= cliquewidth ≤ 2)

For which classes of graphs, definability = recognizability?

Which decompositions can be CMSO-transduced?

 $\mathsf{CMSO-definability} = \mathsf{recognizability} \text{ for graphs of:}$

- ► Thm (Rabin 69) treewidth 1 (*i.e.*, trees, even infinite)
- Thm (Bojańczyk&Pilipczuk 16) bounded treewidth
- Thm (Bojańczyk,Grohe&Pilipczuk 20) bounded linear cliquewidth

and, if using order-invariant CMSO (more expressive than CMSO):

• Thm (Courcelle 96) on cographs (= cliquewidth \leq 2)

One of the consequences of our results

• Thm CMSO-definability = recognizability on cographs.

There are CMSO-transductions from graphs to:

- modular decompositions;
 - cotrees (in case of cographs);
- split decompositions;
- bi-join decompositions.

For both undirected and directed graphs.

There are CMSO-transductions from graphs to:

- modular decompositions;
 - cotrees (in case of cographs);
- split decompositions;
- bi-join decompositions.

For both undirected and directed graphs.

All these results use the following key ingredient:

Theorem

There is a CMSO-transduction from laminar set systems to laminar trees.

There are CMSO-transductions from graphs to:

- modular decompositions;
 - cotrees (in case of cographs);
- split decompositions;
- bi-join decompositions.

For both undirected and directed graphs.

All these results use the following key ingredient:

Theorem

There is a CMSO-transduction from laminar set systems to laminar trees.

There are CMSO-transductions from graphs to:

- modular decompositions;
 - cotrees (in case of cographs);
- split decompositions;
- bi-join decompositions.

For both undirected and directed graphs.

All these results use the following key ingredient:

Theorem

There is a CMSO-transduction from laminar set systems to laminar trees.

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$

either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$

either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$ either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- two disjoint modules are either fully adjacent or fully non-adjacent.
- if two modules intersect, their union is a module.

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$ either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- ▶ two disjoint modules are either fully adjacent or fully non-adjacent.
- ▶ if two modules intersect, their union is a module.

Def: (strong modules) a module, not overlapping another one.

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$ either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- two disjoint modules are either fully adjacent or fully non-adjacent.
- if two modules intersect, their union is a module.

either disjoint or related by inclusion

Def: (strong modules) a module, not overlapping another one.

for each $v \notin M$

Def: (modules) $M \subseteq V(G)$, such that

either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- two disjoint modules are either fully adjacent or fully non-adjacent.
- if two modules intersect, their union is a module.

either disjoint or related by inclusion

Def: (strong modules) a module, not overlapping another one,

in particular, V(G) and $\{v\}$ for each v, are strong modules.
Modular decompositon

for each $v \notin M$

Def: (modules) $M \subseteq V(G)$, such that

either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- two disjoint modules are either fully adjacent or fully non-adjacent.
- if two modules intersect, their union is a module.

either disjoint or related by inclusion

Def: (strong modules) a module, not overlapping another one,

in particular, V(G) and $\{v\}$ for each v, are strong modules.

The inclusion relation on strong modules defines a tree, called laminar tree.

Modular decompositon

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$ either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- two disjoint modules are either fully adjacent or fully non-adjacent.
- if two modules intersect, their union is a module.

either disjoint or related by inclusion

Def: (strong modules) a module, not overlapping another one,

in particular, V(G) and $\{v\}$ for each v, are strong modules.

The inclusion relation on strong modules defines a tree, called laminar tree.

The tree underlying the modular decomposition is this laminar tree.

Modular decompositon

Def: (modules) $M \subseteq V(G)$, such that

for each $v \notin M$ either uv is an edge for all $u \in M$, or uv is not an edge for all $u \in M$.

"Vertices in M are not distinguished from outside of M."

Basic properties:

- two disjoint modules are either fully adjacent or fully non-adjacent.
- if two modules intersect, their union is a module.

either disjoint or related by inclusion

Def: (strong modules) a module, not overlapping another one,

in particular, V(G) and $\{v\}$ for each v, are strong modules.

The inclusion relation on strong modules defines a tree, called laminar tree.

The tree underlying the modular decomposition is this laminar tree.

- Def (set system): a family of subsets S of a ground set U.
- Def (laminar set system): when no two members of S overlap.

- Def (set system): a family of subsets S of a ground set U.
- Def (laminar set system): when no two members of S overlap.

- Def (set system): a family of subsets S of a ground set U.
- Def (laminar set system): when no two members of S overlap.

• Def (laminar tree): tree with node S and \supseteq as ancestor relation

- Def (set system): a family of subsets S of a ground set U.
- Def (laminar set system): when no two members of S overlap,

$$U \in \mathcal{S}, \ \emptyset \notin \mathcal{S}$$

• Def (laminar tree): tree with node S and \supseteq as ancestor relation with U as root

- Def (set system): a family of subsets S of a ground set U.
- Def (laminar set system): when no two members of S overlap,
 - $U \in S$, $\emptyset \notin S$, and $\{v\} \in S$ for $v \in U$.

Def (laminar tree): tree with node S and \supseteq as ancestor relation with U as root, $\{v\}$ for $v \in U$ as leaves.

Theorem

There is a non-deterministic C₂ MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Theorem

counting modulo 2

There is a non-deterministic C_2MSO -transduction that:

inputs a laminar set system (U, S);

outputs the laminar tree T with U as set of leaves.

Theorem

counting modulo 2

There is a non-deterministic C_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of S by one (copy of a) vertex.

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of S by one (copy of a) vertex.

- 1. guess two subsets of vertices L and R;
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of S by one (copy of a) vertex.

Proof idea:

- 1. guess two subsets of vertices L and R;
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

smallest $X \in S$ including $\{\ell, r\}$

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of S by one (copy of a) vertex.

Proof idea:

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

smallest $X \in S$ including $\{\ell, r\}$

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of \mathcal{S} by one (copy of a) vertex.

Proof idea:

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$,

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of \mathcal{S} by one (copy of a) vertex.

Proof idea:

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$, for each member $Z \subsetneq X$ of S, $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of S by one (copy of a) vertex.

Proof idea:

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S, $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.

Theorem

counting modulo 2

There is a non-deterministic \mathbb{C}_2 MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of S by one (copy of a) vertex.

Proof idea:

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S, $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X

Theorem

There is a non-deterministic C₂MSO-transduction that: inputs a laminar set system (U, S); outputs the laminar tree T with U as set of leaves.

Main difficulty:

The CMSO-transduction needs to represent each member of ${\cal S}$ by one (copy of a) vertex.

Proof idea:

counting modulo 2

- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r \neq \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$,
for each member $Z \subsetneq X$ of S , $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$,
for each member $Z \subsetneq X$ of S , $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
 Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$,
for each member $Z \subsetneq X$ of S , $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
 Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$
for each member $Z \subsetneq X$ of S , $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$,
for each member $Z \subsetneq X$ of S , $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
 Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S, $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$,
for each member $Z \subsetneq X$ of S $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
 Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S, $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

•
$$\mu(\ell) = r$$
 if, considering the smallest $X \in S$ including $\{\ell, r\}$,
for each member $Z \subsetneq X$ of S , $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even.
 Z is a descendant of X .

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S, $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X one (L, R, μ) is not sufficient

- 1. guess two subsets of vertices L and R; on correct guesses
- 2. bijectively map L to R, by some CMSO-definable function μ ;
- 3. say that $\ell \in L$ represent the least common ancestor of ℓ and $r = \mu(\ell)$.

• $\mu(\ell) = r$ if, considering the smallest $X \in S$ including $\{\ell, r\}$ for each member $Z \subsetneq X$ of S $Z \cap \{\ell, r\} = \emptyset \iff |Z \cap (L \cup R)|$ is even. Z is a descendant of X one (L, R, μ) is not sufficient, but four are.

Theorem

There are CMSO-transductions from set systems:

to laminar trees (if laminar);

and from (both directed and undirected) graphs:

- to modular decompositions;
 - to cotrees (if cograph);
- to split decompositions;
- ► to bi-join decompositions.

Theorem

There are CMSO-transductions from set systems:

- to laminar trees (if laminar);
- to (weakly)-partitive trees (if (weakly-)partitive);

and from (both directed and undirected) graphs:

- to modular decompositions;
 - to cotrees (if cograph);
- to split decompositions;
- ► to bi-join decompositions.

Theorem

There are CMSO-transductions from set systems:

- to laminar trees (if laminar);
- to (weakly)-partitive trees (if (weakly-)partitive);
- to (weakly)-bipartitive trees (if (weakly-)bipartitive);
- and from (both directed and undirected) graphs:
 - to modular decompositions;
 - to cotrees (if cograph);
 - to split decompositions;
 - to bi-join decompositions.

Theorem

There are CMSO-transductions from set systems:

- to laminar trees (if laminar);
- to (weakly)-partitive trees (if (weakly-)partitive);
- to (weakly)-bipartitive trees (if (weakly-)bipartitive);
- and from (both directed and undirected) graphs:
 - to modular decompositions;
 - to cotrees (if cograph);
 - to split decompositions;
 - ► to bi-join decompositions.

Open directions:

- which decompositions of which structures?
- branch-decomposition and clique-decomposition.
- is counting necessary?

Theorem

There are CMSO-transductions from set systems:

- to laminar trees (if laminar);
- to (weakly)-partitive trees (if (weakly-)partitive);
- to (weakly)-bipartitive trees (if (weakly-)bipartitive);
- and from (both directed and undirected) graphs:
 - to modular decompositions;
 - to cotrees (if cograph);
 - to split decompositions;
 - to bi-join decompositions.

Open directions:

- which decompositions of which structures?
- branch-decomposition and clique-decomposition.
- is counting necessary?

Thank you for your attention.