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How to handle graphs?

Answer: decompose them, recursively.

I deal with simple graphs;
I combine the results.

How to decompose graphs?

I tree decomposition
I clique decomposition
I modular decomposition
I split decomposition
I . . .

Each time, the decomposition is a tree.
In many cases, the tree has vertices as leaves, and labeled inner nodes.
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What does such tree-like decomposition allow?

I investigation of combinatorial properties;
I characterize classes of graphs;
I algorithm design (e.g., dynamic programming).

General framework

On graphs of bounded treewidth,
I Thm (Courcelle 90) every CMSO-definable property

can be recognized by a tree automaton over the tree decomposition.
I Thm (Bodlaender 93)

tree decomposition of bounded width can be obtained in linear-time.
I Corollary CMSO model checking can be done in linear time.
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Converse result?
Courcelle’s conjecture

Bojańczyk&Pilipczuk Theorem

question: On graphs of bounded treewidth
is every recognizable property CMSO-definable?

main difficulty: the input is the graph, and not the tree decomposition

strategy (Courcelle 91):
1. obtain the decomposition within CMSO;
2. encode the recognizability using CMSO-formulas.

within CMSO

by mean of CMSO-transductions

Theorem (Bojańczyk&Pilipczuk 16)
On graphs of bounded treewidth, recognizability = CMSO-definability.

key ingredient: a CMSO-transduction producing the decomposition
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CMSO-Transductions

Σ and Γ: two relationnal signatures. E.g.,
Σ: the graph vocabulary {edge} — edge(x , y) ≡ “x−y is an edge”
Γ: the tree-dec vocabulary {parent, bag} — parent(x , y); bag(v , x)

Definition (CMSO-transduction)
A Σ-to-Γ CMSO-transductions is a composition of:

colouring: guess a finite family of unary relations;
copying: make k copies of the universe;

domain restriction: filter the input structures (partial identity);
universe restriction: subset the universe;
interpretation: interpret each relation name from Γ in Σ;

using CMSO-formulas.

Theorem (Backward Translation Theorem)
τ−1(Y ) is CMSO-definable for τ , a Σ-to-Γ CMSO-transduction

and Y , a CMSO-definable set of Γ-structures.
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For which classes of graphs, definability = recognizability?
Which decompositions can be CMSO-transduced?

CMSO-definability = recognizability for graphs of:
I Thm (Rabin 69) treewidth 1 (i.e., trees, even infinite)

I Thm (Bojańczyk&Pilipczuk 16) bounded treewidth

I Thm (Bojańczyk,Grohe&Pilipczuk 20) bounded linear cliquewidth

One of the consequences of our results

I Thm CMSO-definability = recognizability on cographs.
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Our results

Theorems
There are CMSO-transductions from graphs to:
I modular decompositions;

I cotrees (in case of cographs);
I split decompositions;
I bi-join decompositions.

For both undirected and directed graphs.

All these results use the following key ingredient:

Theorem
There is a CMSO-transduction from laminar set systems to laminar trees.
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Modular decompositon

Def: (modules) M ⊆ V (G), such that

for each v /∈ M
either uv is an edge for all u ∈ M,
or uv is not an edge for all u ∈ M.

“Vertices in M are not distinguished from outside of M.”

Basic properties:
I two disjoint modules are either fully adjacent or fully non-adjacent.
I if two modules intersect, their union is a module.

Def: (strong modules) a module, not overlapping another one.

in particular, V (G) and {v} for each v , are strong modules.

overlapping

either disjoint or related by inclusion

The inclusion relation on strong modules defines a tree, called laminar tree.

The tree underlying the modular decomposition is this laminar tree.
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Laminar tree

I Def (set system): a family of subsets S of a ground set U.

I Def (laminar set system): when no two members of S overlap.

a

b

c

d
e f

g

h

i

{a, b, c, d , e, f , g , h, i}

{a, b, c, d , e}

{a, b}

{a} {b}

{c, d , e}

{c} {d} {e}

{f , g , h, i}

{i} {f , g , h}

{f , g}

{f} {g}

{h}
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Key construction
Theorem
There is a non-deterministic C2 MSO-transduction that:

C2

counting modulo 2

inputs a laminar set system (U, S);
outputs the laminar tree T with U as set of leaves.

Main difficulty:
The CMSO-transduction needs to represent each member of S

by one (copy of a) vertex.
Proof idea:

1. guess two subsets of vertices L and R;

on correct guesses

2. bijectively map L to R, by some CMSO-definable function µ;
3. say that ` ∈ L represent the least common ancestor of ` and r = µ(`).

•µ(`) = r if, considering the smallest X ∈ S including {`, r},
for each member Z ( X of S, Z ∩ {`, r} = ∅ ⇐⇒ |Z ∩ (L ∪ R)| is even.

one (L, R, µ) is not sufficient, but four are.

least common ancestor

smallest X ∈ S including {`, r}
member Z ( X of S

Z is a descendant of X

even

9 / 10
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Conclusion
Theorem
There are CMSO-transductions from set systems:
I to laminar trees (if laminar);

I to (weakly)-partitive trees (if (weakly-)partitive);
I to (weakly)-bipartitive trees (if (weakly-)bipartitive);

and from (both directed and undirected) graphs:
I to modular decompositions;

I to cotrees (if cograph);
I to split decompositions;
I to bi-join decompositions.

Open directions:
I which decompositions of which structures?
I branch-decomposition and clique-decomposition.
I is counting necessary?

Thank you for your attention.
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