Colorful Vertex Recoloring of Bipartite Graphs

Boaz Patt-ShamirAdi RosénWilliam UmbohTel Aviv U.CNRS & U. ParisU. MelbourneCitéCité

Sometimes, living in the same place is hard

Also in computer systems.

Jobs (VMs) may need to be separated due to...

- Conflicting resource requirements
- Security concerns
- Performance considerations
- "Anti-affinity" rules

Abstract Model: Online Recoloring

- Start with colored vertices
 - Vertex = job, color = location
- In each step, a new edge arrives
 - Edge = conflict
- The algorithm must maintain legal vertex coloring at all times
 - If the new edge is monochromatic, the algorithm must recolor (at least) one of its endpoints
 - i.e., migrate at least one of the conflicting jobs

Cost = total number of recolorings

3

Measure

• Aim: minimize **competitive ratio**

$$CR = \max\left\{\frac{\text{cost}(\text{ALG}(\sigma))}{\text{cost}(\text{OPT}(\sigma))} : \text{input } \sigma\right\}$$

- Note: $cost(OPT(\sigma)) \le n$ for all σ
 - Offline solution recolors each vertex at most once

Previous work

- Online coloring (no recoloring)
 - LST'89, HS'94: $\Theta\left(\frac{n}{\log n}\right)$ competitiveness
- Coloring with recourse (forget competitiveness)
 - Dynamic algorithms: absolute cost (#steps), regardless of optimum cost [BCKLRRV'19, BDFPZ'20]
 - Special graphs: Bipartite, bounded-degree, bounded arboricity, interval graphs [KNNP'19, BDFPZ'20, HNW20]
 - General graphs, using an (NP-hard) oracle for coloring: tradeoff between # colors and # recolorings [BCKLRRV'19,SW'19]

Previous work [AMPT'22]

- The competitive ratio of recoloring a bipartite graph with 2 colors is $\Theta(\log n)$.
- The deterministic competitive ratio of $(\Delta + 1)$ recoloring is $\Theta(\Delta)$, and $\Theta(\log \Delta)$ for randomized algorithms.

^{*} Δ is the largest degree in the graph

Our Model

Allow the online algorithm to use more colors than the offline adversary (resource augmentation)

• Hence "colorful"

Additional colors may be more expensive (**weighted** resource augmentation)

A natural extension for the motivating scenario

Our Results

Focus on bipartite graphs (2 colors for the adversary)

- 1. Uniform cost: given *c* colors, c.r = $O\left(\frac{\log n}{c}\right)$
- 2. New Δ colors at cost D: c.r. = $O(\log D + \beta^2)$

This talk

• $\beta \leq c \leq \log n$, where β is the **bond** of the graph

Lower Bounds:

- 1. Competitiveness is $\Omega(\min\{\log n, D\})$ if additional colors cost D, even if randomization is allowed.
- 2. Even for a collection of paths, competitiveness is $\Omega(\log D)$, if additional colors cost D

The **Bond** eta

• A measure of "tree-ness"

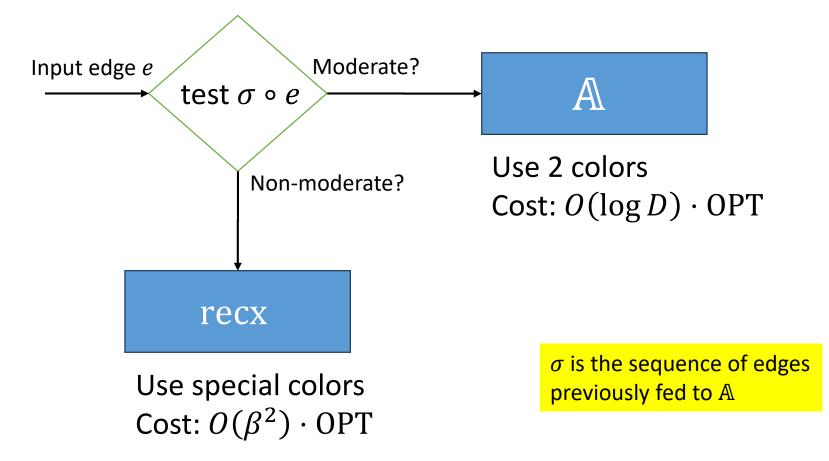
Definition: the maximal number of edges that can be removed so that the number of connected components increases by 1

- Not min cut, not max cut
- The size of the largest minimal cut
- $\beta = 1$ if and only if the graph is a forest

Algorithm B: General Idea

- Recall properties of Algorithm A [AMPT'22]:
 - Number of vertices recolored $\leq 3 \text{ OPT}$
 - A vertex recolored ⇒ component size grows by a constant factor (roughly)
- We show: If input is "D-moderate" then A is O(log D)-competitive
- Edge sequence is *D*-moderate if no edge connects two components of size more than *D* with a majority of recolored nodes

Algorithm B: General Idea (cont.)



Algorithm **B**: Some Details

- Simulation of $\ensuremath{\mathbb{A}}$ is unaware of the special colors
- To prove that A is O(D)-competitive on D-moderate sequences we use a non-trivial charging scheme
- **recx** uses only special colors
 - $\Delta + 1$ is easy, can reduce to Δ
- The number of edges sent to **recx** is $O(\beta \cdot OPT/D)$
 - Because each such edge connects 2 large components with many vertices recolored by A

Another idea: Algorithm C

- Assign a level to each node. Initially, all 1
- Maintain a simulation of \mathbb{A}_i for each level i
 - Each instance uses a distinct pair of colors
- Edges with both endpoints at level i are sent to \mathbb{A}_i
 - Edges that connect different levels are okay!
- If new edge makes input to \mathbb{A}_i not X-moderate, increase level of one of its endpoints to i + 1
 - If input to \mathbb{A}_{i+1} moderate, recolor neighbors of newcomer
 - Otherwise, increase level to i + 2 and repeat.

Algorithm C: Some Details

If new edge makes input to \mathbb{A}_i not X -moderate, increase level of one of its endpoints to i+1

If input to \mathbb{A}_{i+1} moderate, recolor neighbors of newcomer Otherwise, increase level to i + 2 and repeat.

- *X*-moderate for $X = \max\{2^{1/\epsilon}, \beta^2\}$
- We show that:
 - Each \mathbb{A}_i is $\log X$ -competitive, i.e., $\left(\log \beta + \frac{1}{\epsilon}\right)$ -comp.

•
$$OPT_i = O\left(\frac{\beta^2}{X}OPT_{i-1}\right)$$

• Hence the number of levels is $O(\epsilon^{-1} \log n)$

Conclusion

- We have extended recoloring of bipartite graphs to the resource augmentation setting
- We have introduced and analyzed the weighted resource augmentation model
- We have shown that the concept of bond is useful

