Computability of extender sets in multidimensional subshifts

Antonin Callard, Léo Paviet Salomon, Pascal Vanier

LORIA, Université de Lorraine

March 5, 2025

Sofic subshifts on \mathbb{Z}^d : letter-by-letter projections of SFTs (less formally, SFT "up to some construction lines"). **Example**: *sunny-side up*, subshift on $\{\Box, \Box\}$, at most one \Box per configuration. Projection of an SFT on alphabet $\{ \leftrightarrow \Box \}$

Example: sunny-side up, subshift on $\{\Box, \Box\}$, at most one \Box per configuration.

Projection of an SFT on alphabet $\{ \rightarrow, \rightarrow, \leftarrow \}$

Example: sunny-side up, subshift on $\{\Box, \Box\}$, at most one \Box per configuration.

Projection of an SFT on alphabet $\{ \rightarrow, \rightarrow, \leftarrow \}$

Example: sunny-side up, subshift on $\{\Box, \Box\}$, at most one \Box per configuration.

Projection of an SFT on alphabet $\{ \leftrightarrow, \ominus, \bullet \}$

 \mathbb{Z} -sofic = regular language as forbidden patterns

Question Given an effective \mathbb{Z}^d -subshift X, determine whether it is sofic.

Not an easy problem: multidimensional sofic subshifts can be very complicated.

Lifts: link effective and sofic subshifts

Define the lift z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

Lifts: link effective and sofic subshifts

Define the lift z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

Lifts: link effective and sofic subshifts

Define the lift z^{\uparrow} of a \mathbb{Z} -configuration z as the bidimensional configuration y whose rows are all equal to z.

Goal: characterize patterns equivalent for the "exchangeability" relation

Given a subshift X, $w \sim w' \iff$ if we can exchange w and w' in any valid pattern of X (in particular, w, w' have the same domain).

Goal: characterize patterns equivalent for the "exchangeability" relation

Given a subshift X, $w \sim w' \iff$ if we can exchange w and w' in any valid pattern of X (in particular, w, w' have the same domain).

We write $E_X(n)$ for the number of **equivalence classes** of patterns of domain $\{0, \ldots, n-1\}^d$

Example for sofic subshifts

Example: X = sunny-side-up, configurations on $\{\Box, \Box\}$ with ≤ 1 \Box .

First equivalence class:

Example for sofic subshifts

Example: X = sunny-side-up, configurations on $\{\Box, \Box\}$ with ≤ 1 \Box .

First equivalence class:

Example for sofic subshifts

The SFT case, the $E_X(n)$ map

In a SFT, valid extensions of a pattern only depend on its boundary $\implies E_X(n) = o(|\mathcal{A}|^{n^d})$ classes.

The SFT case, the $E_X(n)$ map

In a SFT, valid extensions of a pattern only depend on its boundary $\implies E_X(n) = o(|\mathcal{A}|^{n^d})$ classes.

The SFT case, the $E_X(n)$ map

In a SFT, valid extensions of a pattern only depend on its boundary $\implies E_X(n) = o(|\mathcal{A}|^{n^d})$ classes.

 $(E_X(n))_{n\in\mathbb{N}}$ = too fine-grained, but what seems to matter is its growth rate:

 $(E_X(n))_{n\in\mathbb{N}}$ = too fine-grained, but what seems to matter is its growth rate:

Definition : Extender entropy
Define the **extender entropy** of a
$$\mathbb{Z}^d$$
 subshift X as
 $h_E(X) = \lim_{n \to +\infty} \frac{\log E_X(n)}{n^d} = \inf_{n \to +\infty} \frac{\log E_X(n)}{n^d}$

$$E_X(n) \sim |\mathcal{A}|^{h_E(x)n^d}$$

Hence, $0 \le h_E(X) \le \log A$, and is always 0 for an SFT X.

Léo Paviet Salomon

 $h_E(X)$ is a real number: how to "computably characterize" it ?

 $h_E(X)$ is a real number: how to "computably characterize" it ? Idea: $\alpha \in \mathbb{R}$ is computable if we can approximate it, $|\alpha - r_n| < 2^{-n}$ with $(r_n)_{n \in \mathbb{N}}$ computable. Removing the computability hypothesis on (r_n) gives non-computable real numbers:

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

 $h_E(X)$ is a real number: how to "computably characterize" it ? Idea: $\alpha \in \mathbb{R}$ is computable if we can approximate it, $|\alpha - r_n| < 2^{-n}$ with $(r_n)_{n \in \mathbb{N}}$ computable. Removing the computability hypothesis on (r_n) gives non-computable real numbers:

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

 $h_E(X)$ is a real number: how to "computably characterize" it ? Idea: $\alpha \in \mathbb{R}$ is computable if we can approximate it, $|\alpha - r_n| < 2^{-n}$ with $(r_n)_{n \in \mathbb{N}}$ computable. Removing the computability hypothesis on (r_n) gives non-computable real numbers:

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

 $h_E(X)$ is a real number: how to "computably characterize" it ? Idea: $\alpha \in \mathbb{R}$ is computable if we can approximate it, $|\alpha - r_n| < 2^{-n}$ with $(r_n)_{n \in \mathbb{N}}$ computable. Removing the computability hypothesis on (r_n) gives non-computable real numbers:

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

 $h_E(X)$ is a real number: how to "computably characterize" it ? Idea: $\alpha \in \mathbb{R}$ is computable if we can approximate it, $|\alpha - r_n| < 2^{-n}$ with $(r_n)_{n \in \mathbb{N}}$ computable. Removing the computability hypothesis on (r_n) gives non-computable real numbers:

$$\Pi_n = \inf_{k_1} \sup_{k_2} \inf_{k_3} \dots r_{k_1,\dots,k_n} \subset \mathbb{R}$$

Easy direction: $h_E(X) \in \Pi_3$

Léo Paviet Salomon

$h_E(X) = \alpha \in \Pi_3$

$$h_E(X) = \alpha \in \Pi_3$$

$$\inf_n \frac{E_X(n)}{n^d}$$

Proof sketch and construction

Proof sketch and construction

Proof sketch and construction

• Periodicity: get #Patterns of size $n \approx E_X(n)$

• $\approx 2^{\alpha_n}$ different patterns:

• Periodicity: get #Patterns of size $n \approx E_X(n)$

 \sim Density of black cells: α_n

• Periodicity: get #Patterns of size $n \approx E_X(n)$

A proportion α_n of the cells "matter for extensibility".

• Periodicity: get #Patterns of size $n \approx E_X(n)$

A proportion α_n of the cells "matter for extensibility". + Lots of hidden details (α_n non-computable but X must be effective, adapting it to sofic subshifts ...)

Léo Paviet Salomon

Another isomorphism invariant in subshifts:

- Fully characterized by computability theory
- For which sofic subshifts are "as expressive" as the effective subshifts
- Which is very different in dimensions d = 1 and $d \ge 2$ in the case of sofic subshifts

Another isomorphism invariant in subshifts:

- Fully characterized by computability theory
- For which sofic subshifts are "as expressive" as the effective subshifts
- Which is very different in dimensions d = 1 and $d \ge 2$ in the case of sofic subshifts

More results:

	\mathbb{Z}	$\mathbb{Z}^{d\geq 2}$
SFT	{0}	
Sofic	{0}	Π ₃
Effective	Π ₃	
Computable	Π ₂	
Effective and minimal	Π_1	
Effective and 1-mixing/block-gluing	Π ₃	