Cycle Counting under Local Differential Privacy for Degeneracy-bounded Graphs

Quentin Hillebrand, Vorapong Suppakitpaisarn, Tetsuo Shibuya

The University of Tokyo

STACS, March 2025

State of the Art of Private Cycle Counting

Model	Lower Bound	Upper Bound
Non-interactive	$\Omega(n^2)$	$\mathcal{O}\left(n^2\right)$
Interactive	$\Omega(n^{1.5})$	$\mathcal{O}\left(n^{2} ight)$

Table 1: State of the art $\ell_2\text{-error}$ for triangle counting [Imola et al., USENIX 2022] and [Eden et al., ICALP 2023]

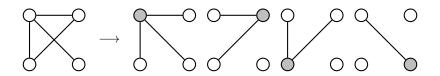
 ℓ_2 -error of our algorithm for triangles: $\mathcal{O}\left(n\right)$

Model	Lower Bound	Upper Bound
Non-interactive	$\Omega(n^{k-1})$	$\mathcal{O}\left(n^{k-1}\right)$
Interactive	$\Omega(n^{k-1.5})$	$\mathcal{O}\left(n^{k-1}\right)$

Table 2: Bounds on the ℓ_2 -error for graphlets of size k [Suppakitpaisarn et al., AISTATS 2025]

 ℓ_2 -error of our algorithm for odd k-cycles: $\mathcal{O}\left(n^{rac{k-1}{2}}
ight)$

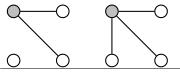
Local Differential Privacy¹ for Graph Statistics



Definition (ε -edge local differentially privacy [Qin et al., SIGSAC 2017])

Let $\varepsilon > 0$. A randomized algorithm \mathcal{R} is ε -edge local differentially private on the node ν_i if, for all adjacency vectors differing by 1 bit $a \sim a'$, and for all S

$$\mathbb{P}[\mathcal{R}(a) \in S] \le e^{\varepsilon} \cdot \mathbb{P}[\mathcal{R}(a') \in S].$$

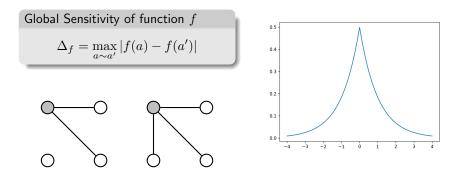


This definition is robust to post-processing
The composition of 2 private mechanisms yields a private mechanism

¹Kasiviswanathan et al., "What can we learn privately?", 2011, SIAM Journal on Computing

Building Block 1: Laplace Mechanism

With the **Laplace Mechanism** [Dwork et al., TCC 2006] one can privately publish **numbers**.



Publishing $f(x) + Lap(\Delta_f / \varepsilon)$ provides ε edge local differential privacy

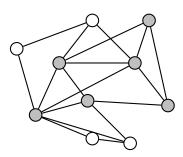
Building Block 2: Randomized Response

With **Randomized Response** [Warner, Journal of the American Statistical Association 1965] one can privately publish vectors of bits and thus **adjacency lists**.

$$\mathbb{P}[\mathsf{RR}(b) = 1] = \begin{cases} \frac{e^{\varepsilon}}{1+e^{\varepsilon}} & \text{if } b = 1\\ \frac{1}{1+e^{\varepsilon}} & \text{if } b = 0. \end{cases}$$

Degeneracy

Definition (Degeneracy [Lick and White, Canadian Journal of Mathematics 1970]) The degeneracy of a graph G is the small number $\delta(G)$ such that any subgraph of G, contains at least one node with induced degree at most $\delta(G)$ in this subgraph.

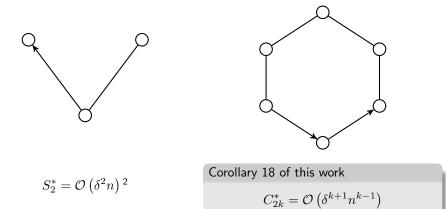


- Real-world graph tend to present an exponential degree distribution and are thus not degree-bounded [Barabási and Albert, Science 1999].
- On the other hand the degeneracy stays small in most graph irrespective of its size [Shin et al., ICDM 2016].
- Moreover, preferential attachment naturally creates degeneracy-bounded graphs [Barabási and Albert, Science 1999].

Bounds on Subgraphs Counts

 S_2^* is the number of forks such that one of the node on the extremity has a higher degree than the central node.

 C_{2k}^{\ast} is the number of cycles of length 2k such that at least 3 consecutive nodes have a monotonous degree.

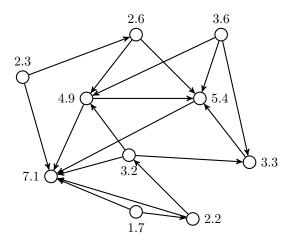


 $^2{\rm Chiba}$ and Nishizeki, "Arboricity and Subgraph Listing Algorithms", 1985, SIAM journal of computing

Hillebrand, Suppakitpaisarn, Shibuya

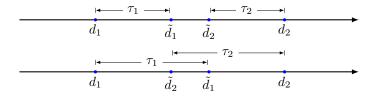
Private Cycle Counting

Preprocessing: Private Vertex Ordering



- Publish user's degree with Laplace Mechanism (building block 1)
- Orient the edges from lowest degree to highest degree

Error on the Laplace Publication

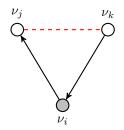


- The value of the minimum or maximum of 2 degrees is only changed if the sum of the 2 noises is larger than the gap between the 2 degrees
- The error on the minimum or maximum is never larger than the sum of the noises

Optimized Algorithm

The algorithm adapts the **2-step mechanism** described in Imola et al., USENIX 2021.

- Each user **publishes its degree** with the Laplace mechanism (building block 1)
- Those noisy degrees are used to **privately reorder the graph**
- Each user publishes its neighbors using Randomized Response (building block 2)
- The central server aggregates the graph and sends it back to all the users
- Using the graph sent by the central server, each user **locally computes the number of oriented triangles** it is involved in and publishes it with the Laplace mechanism
- The central server outputs the sum of all of those publications

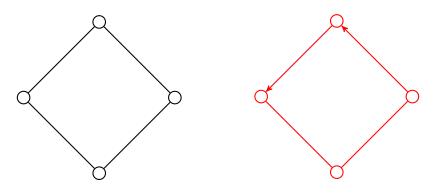


Triangle Counting

Accuracy of Private Triangle Counting

Error of state of the art triangle counting algorithms depend on the number of C_4 .

Error of **the proposed** triangle counting algorithms depend on the number of C_4^* .



This gives a L2-error of our algorithm bounded by $\mathcal{O}(\delta^{1.5}n^{0.5} + \delta^{0.5}d^{0.5}_{max}n^{0.5})$.

Conclusion

- We introduce a light weight and efficient preprocessing step to privately reorder a graph.
- We show how this preprocessing can be used to design a triangle counting algorithm for degeneracy bounded graphs.
- The algorithm can be extended to the private estimation of the number of odd-length cycles.

12/16

Thank you for your attention!

References I

🔋 Imo

Imola, Jacob, Takao Murakami, and Kamalika Chaudhuri. "{Communication-Efficient} triangle counting under local differential privacy". In: *31st USENIX security symposium (USENIX Security 22)*. 2022, pp. 537–554.

Eden, Talya et al. "Triangle counting with local edge differential privacy". In: *arXiv preprint arXiv:2305.02263* (2023).

Suppakitpaisarn, Vorapong et al. "Counting Graphlets of Size k under Local Differential Privacy". In: The 28th International Conference on Artificial Intelligence and Statistics. 2025. URL: https://openreview.net/forum?id=rAvvANgDoh

https://openreview.net/forum?id=rAvvANgQoh.

Qin, Zhan et al. "Generating synthetic decentralized social graphs with local differential privacy". In: *Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security*. 2017, pp. 425–438.

Kasiviswanathan, Shiva Prasad et al. "What can we learn privately?" In: SIAM Journal on Computing 40.3 (2011), pp. 793–826.

References II

- Dwork, Cynthia et al. "Calibrating noise to sensitivity in private data analysis". In: Theory of Cryptography: Third Theory of Cryptography Conference. TCC 2006. New York, NY, USA: Springer, Mar. 2006, pp. 265–284.
- Warner, Stanley L. "Randomized response: A survey technique for eliminating evasive answer bias". In: *Journal of the American Statistical Association* 60.309 (1965), pp. 63–69.
- Lick, Don R and Arthur T White. "k-Degenerate graphs". In: Canadian Journal of Mathematics 22.5 (1970), pp. 1082–1096.
 - Barabási, Albert-László and Réka Albert. "Emergence of scaling in random networks". In: *science* 286.5439 (1999), pp. 509–512.
 - Shin, Kijung, Tina Eliassi-Rad, and Christos Faloutsos. "Corescope: Graph mining using k-core analysis—patterns, anomalies and algorithms". In: 2016 IEEE 16th international conference on data mining (ICDM). IEEE. 2016, pp. 469–478.

References III

- Chiba, Norishige and Takao Nishizeki. "Arboricity and Subgraph Listing Algorithms". In: SIAM J. Comput. 14.1 (1985), pp. 210–223. DOI: 10.1137/0214017. URL: https://doi.org/10.1137/0214017.
 - Imola, Jacob, Takao Murakami, and Kamalika Chaudhuri. "Locally differentially private analysis of graph statistics". In: *30th USENIX security symposium (USENIX Security 21)*. 2021, pp. 983–1000.