Designing Exploration Contracts

Martin Hoefer, Conrad Schecker, Kevin Schewior

RWTH Aachen University, Goethe University Frankfurt, University of Cologne

42nd International Symposium on Theoretical Aspects of Computer Science, Jena

A **principal** \mathcal{P} delegates a costly task to an **agent** \mathcal{A}

A principal \mathcal{P} delegates a costly task to an **agent** \mathcal{A} using a **contract** t.

A **principal** \mathcal{P} delegates a costly task to an **agent** \mathcal{A} using a **contract** t.

A **principal** \mathcal{P} delegates a costly task to an **agent** \mathcal{A} using a **contract** t.

- Overview: Algorithmic Contract Design
 - [Dütting, Feldman, Talgam-Cohen; Found. Trends Theor. Comput. Sci., 2024]
- ▶ What if A can explore actions?

Exploration: Pandora's Box Problem

Exploration: Pandora's Box Problem

- ▶ Open box *i* to reveal actual contained value, then stop or continue.
- Adaptively open (any) boxes in any order.
- In the end, maximum revealed value is taken.

Applications: Buying a house, hiring a job candidate, ...

[Weitzman; Econometrica, 1979]

Pandora's Box Problem with Principal and Agent

A principal \mathcal{P} delegates the exploration to an agent \mathcal{A} .

Pandora's Box Problem with Principal and Agent

A **principal** \mathcal{P} delegates the exploration to an **agent** \mathcal{A} .

nonnegative value for $\mathcal{A} \stackrel{\nearrow}{\sim}$ nonnegative value for \mathcal{P}

 \mathcal{P} commits to a **contract**, specifying payments $t_{i,j} \in [0, b_{i,j}]$ beforehand.

Suppose A takes outcome $(a_{i,j}, b_{i,j})$ in the end.

- \triangleright A receives $a_{i,j} + t_{i,j}$, and bears all opening costs,
- $\triangleright \mathcal{P}$ receives $b_{i,i} t_{i,i}$.

Pandora's Box Problem with Principal and Agent

A **principal** \mathcal{P} delegates the exploration to an **agent** \mathcal{A} .

nonnegative value for \mathcal{A}^{\nearrow} nonnegative value for \mathcal{P}

 \mathcal{P} commits to a **contract**, specifying payments $t_{i,j} \in [0, b_{i,j}]$ beforehand.

Suppose A takes outcome $(a_{i,j}, b_{i,j})$ in the end.

- ▶ A receives $a_{i,i} + t_{i,j}$, and bears all opening costs,
- $\triangleright \mathcal{P}$ receives $b_{i,i} t_{i,i}$.

Goal: Find an optimal exploration contract for \mathcal{P} .

Index Policy for A

- ightharpoonup Calculate an **index** φ_i for every box *i*.
- \triangleright Consider boxes in non-increasing order of φ_i .
- ▶ Suppose box *i* is considered. Let $v := \max_{(i',j') \text{ revealed}} \{a_{i',j'} + t_{i',j'}\}$. Open box *i* only if $v \leq \varphi_i$. Stop only if $v \geq \varphi_i$.
- ightharpoonup Break ties in favor of \mathcal{P} .

[Weitzman; Econometrica, 1979]

Index Policy for \mathcal{A}

- \triangleright Calculate an **index** φ_i for every box *i*.
- \triangleright Consider boxes in non-increasing order of φ_i .
- ▶ Suppose box *i* is considered. Let $v := \max_{(i',j') \text{ revealed}} \{a_{i',j'} + t_{i',j'}\}$. Open box *i* only if $v \leq \varphi_i$. Stop only if $v \geq \varphi_i$.
- ightharpoonup Break ties in favor of \mathcal{P} .

[Weitzman; Econometrica, 1979]

Example

Index Policy for \mathcal{A}

- ightharpoonup Calculate an **index** φ_i for every box *i*.
- \triangleright Consider boxes in non-increasing order of φ_i .
- ▶ Suppose box *i* is considered. Let $v := \max_{(i',j') \text{ revealed}} \{a_{i',j'} + t_{i',j'}\}$. Open box *i* only if $v \leq \varphi_i$. Stop only if $v \geq \varphi_i$.
- ightharpoonup Break ties in favor of \mathcal{P} .

[Weitzman; Econometrica, 1979]

Example

The Index φ_i

For the **index** φ_i of box $i \in [n]$, it holds

$$\sum_{j\in[m]} p_{i,j} \cdot \max\{0, a_{i,j} + t_{i,j} - \varphi_i\} = c_i.$$

The Index φ_i

For the **index** φ_i of box $i \in [n]$, it holds

$$\sum_{j\in[m]}p_{i,j}\cdot\max\{0,a_{i,j}+t_{i,j}-\varphi_i\}=c_i.$$

Example

Consider some box *i* with

$$ightharpoonup c_i = 3$$

$$c_i = 3,$$

$$a_{i,j} + t_{i,j} = \begin{cases} 5+3, & \text{w.p. } 1/2 \\ 0+5, & \text{w.p. } 1/3. \\ 1+1, & \text{w.p. } 1/6 \end{cases}$$

The Index φ_i

For the **index** φ_i of box $i \in [n]$, it holds

$$\sum_{j\in[m]}p_{i,j}\cdot\max\{0,a_{i,j}+t_{i,j}-\varphi_i\}=c_i.$$

Example

Consider some box *i* with

$$ightharpoonup c_i = 3$$

$$c_i = 3,$$

$$a_{i,j} + t_{i,j} = \begin{cases} 5+3, & \text{w.p. } 1/2 \\ 0+1, & \text{w.p. } 1/3. \\ 1+1, & \text{w.p. } 1/6 \end{cases}$$

Linear Contracts

Definition

A linear contract is given by an $\alpha \in [0,1]$ such that

$$t_{i,j} = \alpha \cdot b_{i,j}$$

holds for all $(i,j) \in [n] \times [m]$.

Linear Contracts

Definition

A linear contract is given by an $\alpha \in [0,1]$ such that

$$t_{i,j} = \alpha \cdot b_{i,j}$$

holds for all $(i, j) \in [n] \times [m]$.

- ▶ Goal: Find $\alpha \in [0,1]$ such that \mathcal{P} 's expected utility is maximized.
- ▶ Linear contracts are simple and practical. An important subclass!

[Dütting, Roughgarden, and Talgam-Cohen. EC 2019.]

Theorem

An optimal linear exploration contract can be computed in poly-time.

Theorem

An optimal linear exploration contract can be computed in poly-time.

Proof outline.

• Only consider critical α -values where \mathcal{A} 's action changes.

Theorem

An optimal linear exploration contract can be computed in poly-time.

Proof outline.

- ▶ Only consider critical α -values where \mathcal{A} 's action changes.
 - $ightharpoonup \mathcal{A}$ might behave identically under contracts α and $\alpha \varepsilon$.
 - ▶ Then \mathcal{P} pays $\alpha \varepsilon$ instead of α for the same expected outcome.
 - ▶ If there is no such $\varepsilon > 0$, then α is criticial.

Theorem

An optimal linear exploration contract can be computed in poly-time.

Proof outline.

- ▶ Only consider critical α -values where \mathcal{A} 's action changes.
 - $ightharpoonup \mathcal{A}$ might behave identically under contracts α and $\alpha \varepsilon$.
 - ▶ Then \mathcal{P} pays $\alpha \varepsilon$ instead of α for the same expected outcome.
 - ▶ If there is no such $\varepsilon > 0$, then α is criticial.
- Efficient enumeration of critical α -values would be sufficient: For every critical α , compute the expected value of \mathcal{P} .

Efficient enumeration of critical α -values is actually possible:

Efficient enumeration of critical α -values is actually possible:

- Consider the index policy.
 - $ightarrow \mathcal{A}$'s behavior changes only at intersections of...
 - ... some $v_{i,j}(\alpha) := a_{i,j} + \alpha \cdot b_{i,j}$ with some index $\varphi_{i'}(\alpha)$.
 - ... some index $\varphi_i(\alpha)$ with some other index $\varphi_{i'}(\alpha)$.

Efficient enumeration of critical α -values is actually possible:

- Consider the index policy.
 - $\rightarrow \mathcal{A}$'s behavior changes only at intersections of...
 - ... some $v_{i,j}(\alpha) := a_{i,j} + \alpha \cdot b_{i,j}$ with some index $\varphi_{i'}(\alpha)$.
 - ... some index $\varphi_i(\alpha)$ with some other index $\varphi_{i'}(\alpha)$.
- The index φ_i as a function of α is monotone, convex, piece-wise linear with at most 2m+1 linear segments.

Efficient computation of optimal **general** exploration contracts? Open problem, but it's possible for some interesting subclasses!

Efficient computation of optimal **general** exploration contracts? Open problem, but it's possible for some interesting subclasses!

- Non-intrinsic agent, where $a_{i,j} = 0$.
 - Standard in most contract design problems.
 - ightharpoonup Optimal contract can be obtained from the index policy of \mathcal{P} .

Efficient computation of optimal **general** exploration contracts? Open problem, but it's possible for some interesting subclasses!

- Non-intrinsic agent, where $a_{i,j} = 0$.
 - Standard in most contract design problems.
 - ightharpoonup Optimal contract can be obtained from the index policy of \mathcal{P} .
- ▶ Binary boxes with two value-pairs and $a_{i,2} = b_{i,2} = 0$.

[Bechtel, Dughmi, and Patel; EC 2022]

- ► The first good outcome is taken.
- \triangleright Set up payments $t_{i,1}$ to induce optimal order of boxes.
- ▶ Begin with minimum payments, then increase them greedily.

Efficient computation of optimal **general** exploration contracts? Open problem, but it's possible for some interesting subclasses!

- Non-intrinsic agent, where $a_{i,j} = 0$.
 - Standard in most contract design problems.
 - ightharpoonup Optimal contract can be obtained from the index policy of \mathcal{P} .
- ▶ Binary boxes with two value-pairs and $a_{i,2} = b_{i,2} = 0$.

[Bechtel, Dughmi, and Patel; EC 2022]

- ► The first good outcome is taken.
- \triangleright Set up payments $t_{i,1}$ to induce optimal order of boxes.
- Begin with minimum payments, then increase them greedily.
- ▶ IID-boxes with a single positive \mathcal{P} -value.
 - ▶ Phase 1 where A immeadiately stops on a good P-outcome.
 - ▶ Phase 2 where \mathcal{P} bets that \mathcal{A} does not stop at all.

Thank you!