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Given a set of objects

Want to group them such that

objects in the same group are more “similar’ to each other than to those In
the other groups

Groups are called Clusters
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Center-based Clustering

X C F': set of k centers

P: set of n point
poInts * Minimize an objective

F: set of facilities

d: distance functionon P U F k-Median: pélpd(l?; X)

k: positive integer k-Center: maxd(p,X)
pEP

k-Means: Y d(p, X)?
peP



Hybrid Clustering
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Think of placing k WiFi routers, each with coverage radius 7

Clients within coverage, pay O (zero)

Clients outside coverage, pay the distance to the nearest ball
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Think of placing k& WiFi routers, each with coverage radius r
Clients within coverage, pay 0O (zero)

Clients outside coverage, pay the distance to the nearest ball
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Hybrid Clustering

® d.(p,X):=max{d(p,X) — 1,0} r-distance

| X C F': set of k centers
P: set of n points o
* Minimize
F: set of facilities
d,(p, X
k: positive integer pze:p r (P, X)

d: distance functionon P U F

T': non-negative real
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Motivation

* |nterpolates between k-Median and k-Center

* Shape Fitting
* Extension of Linear regression: Fitting “best” lines

* Projective Clustering: Fitting "best” affine spaces

* Hybrid Clustering: Fitting "best” -radius balls



Literature

* Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi
[Approx’ 24]

* r=0:d,(p,X) =d(p,X) = k-Median
o r = OPT,.:>).d,.(p,X) = 0 = k-Center OP7T,. = k-Center OPT

* No Uni-criteria approximations:  have to violate both—cost & radius
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Literature

Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi
[Approx’ 24]

No Uni-criteria approximations:  have to violate both—cost & radius

Studied the problem in ]Rd, where centers can be chosen anywhere

T ——

For R%,designed (1 + €, 1 + €)-bicritera approximation

| OPT cost using r-radius balls

V
* whose cost using (1 + €)r-radius balls is at most (1 + €)OPT,

* intime FPT(k,d, €)



Our Results

Theorem 1.

Substantially improve and generalize the results of Fomin at al.



Our Results

no d here
[heorem 1. -
i | | N | | | - r : = iy

For R%,design (1 + €, 1 + €)-bicritera approximation in time FP7(k,€) |

Fedor et al [Approx'24].

)W 0(1) |

For IRid,deSign (1 + 6,1+ E)-bicritera approximation in time (kd/e€



Our Results
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[heorem 1. |

For R9,design (1 + €, 1 + €)-bicritera approximation in time 20(K/€%),0(1)

Fedor et al [Approx 24].

(kd/e)°™ 0(1)

' For R%,design (1 + €, 1 + €)-bicritera approximation in time 2



Our Results

no d here
Theorem 1.

For R%,design (1 + €, 1 + €)-bicritera approximation in time FPT(k,€) |

Works for metric spaces with bounded (algorithmic) scatter dimension

Bounded Doubling | - Bounded Treewidth l  Planar ! Minor-closed '

Works even when the objective is a monotone norm of r-distances

. Generalizes the FOCS’'23 framework of Abbasi* et al. to 7-distances ]

* Parameterized Approximation Schemes for Clustering with General Norm Objectives
Abbasi, Banerjee, Byrka, Chalermsook, G., Khodamoradi, Marx, Sharma, Spoerhase




Our Results

no d here
Theorem 1.

For R%,design (1 + €, 1 + €)-bicritera approximation in time FPT(k,€) |
I Generalizes the FOCS’'23 framework of Abbasi* et al. to r-distances ]

Theorem 2.

 Design coresets of size 29(41°8(1/€)) klogn in doubling metrics of dimension d |

* Parameterized Approximation Schemes for Clustering with General Norm Objectives
Abbasi, Banerjee, Byrka, Chalermsook, G., Khodamoradi, Marx, Sharma, Spoerhase
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' For IR{d deS|gn (1 + 6,1+ E) bicritera approxmahon in time FPT(k E)



This talk

Thorm .

For IR{d,design (1 + €,1 + €)-bicritera approximation in time FP7(k,€) |

* |dea based on EPAS framework of Abbasi et al. [FOCS23], 1 Unified-EPAS I

® (1 + €)-approximation running in time FP7(k, €)
* for many clustering problems
* under any metric space that has bounded (algorithmic) scatter dimension

° | ifled manner
In a unified manne EPAS: Efficient Parameterized Approximation Schemes

FPT-AS
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Consider the clustering corresponding to an optimal solution O

For each cluster j € |k|, we maintain a cluster constraint @ ;

Each (; is a sequence of pairs (p,1;,), where p ECluster jand 1, < d(p, 0)
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Unified-EPAS: Basic ldea

Consider the clustering corresponding to an optimal solution O

For each cluster j € |k|, we maintain a cluster constraint @ ;
Each (; is a sequence of pairs (p,1;,), where p ECluster j and 1, < d(p, O)

Find X = (x4, ..., Xx) such that x; satisfies all requests in Q;
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Unified-EPAS

Initialization

No

If cost(X) > (1 +€) - OPT

-~ — Find a “witness” p € P to X d(p,X) > (14+€/10)-d(p, 0)

can find a witness to X w.h.p. Yes

Guess cluster j € [k] of pin O
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Update cluster constraint () i

Recompute X;




Unified-EPAS

Initialization

No

If cost(X) > (1 +€) - OPT

can find a witness to X w.h.p. Yes

Find a “witness”p € P to X d(p,X) > 1+ €/10) -d(p, 0)

Guess cluster j € [k] of pin O

Question:

i Bound #iterations? |

]i e-scatter dimension

| Upper Bounds |

Update cluster constraint () i

Recompute X;




Unified-EPAS

i Bound #iterations? | Initialization
]i e-scatter dimension I

No

If cost(X) > (1 +€) - OPT

Find a “witness”p € P to X d(p,X) > 1+ €/10) -d(p, 0)

Yes

Guess cluster j € [k] of pin O

Update cluster constraint () i

Recompute X;




|
i

e-scatter dimension |

Fix Q]

| Bound #iterations? |

(0}, 1)
S
S
(pj 1)
(p?,75)

(P, 1)

Unified-EPAS

Initialization

If cost(X) > (1 +€) - OPT

Yes

Find a “witness” p € P to X

Guess cluster j € [k] of pin O

Recompute X;

No

d(p,X) > (14+€/10)-d(p, 0)

Update cluster constraint () i



Unified-EPAS

i Bound #iterations? | Initialization
]i e-scatter dimension |
1

No

If cost(X) > (1 +€) - OPT

Fix Q]

Yes

Find a “witness”p € P to X d(p,X) > 1+ €/10) -d(p, 0)

g - (pj, 1)
ij N Kcus @) (p]Z,T'Z) .
Guess cluster j € [k] of pin O
J / . J’'P
Update cluster constraint () i

g <p?, rp5>

6 ._._.__.(.1__'___6;1.7:}2_. 6 6
xp ® (p/., 1) Recompute X,




| Unified-EPAS
o I.30und #iterations” | Initialization

ji e-scatter dimension |

Fix Q;

3 Q] Yes

, 1 11 Find a “witness”p € P to X d(p,X) > 1+ €/10) -d(p, 0)
x] ’ (p] ) rp )

Guess cluster j € [k] of pin O

J / J'P

4 1+ ey 4 4
xj W ® (p;\1p) |

Update cluster constraint ¢ ;

x; ® (».1)

(1 + e)rf
X ® (p7. 1)

€-scattering

~ e-scatter dimension of a metric space is /A l ~ if any e-scattering contains at most A many triples with same radius |
- - . L . —— ’

Recompute X;




Unified-EPAS

i Bound #iterations? | Initialization
ji e-scatter dimension |
1

No

If cost(X) > (1 +€) - OPT

Fix Q]

Yes

Find a “witness”p € P to X d(p,X) > 1+ €/10) -d(p, 0)

le (p]l’ rpl)
Guess cluster j € [k] of pin O
3 et 2 .3
v T * 1)
et 0 e o 3 T @ (%, 1)
J 7P Update cluster constraint ¢ ;
> |

A ) 7, 15)
(Lt e,
X ® (p7. 1)

€-scattering

~ e-scatter dimension of a metric space is /1 CD If radius aspect ratio is bounded, then the length is bounded |
L - . L . ——— .

Recompute X;




Unified-EPAS

,i Bound #iterations? | Initialization
]i Upper Bounds I

No

If cost(X) > (1 +€) - OPT

Find a “witness”p € P to X d(p,X) > 1+ €/10) -d(p, 0)

Initialization

Yes

Initialize Cluster constraints

Guess cluster j € |k] of pin O
(4, ..., Oy using upper bounds

Initialize solution X' = (X1, ..., Xi) Update cluster constraint Q;

using 04, ..., Q%

Recompute X;

Lemma 2

i Upper bounds \ l_> Radii aspect ratio of requests in every (; is bounded ‘




Unified-EPAS

Lemma 1

- W cost(X) > (1 + €) - OPT, then we can find a witness to X w.h.p. i g(k, €)

_Lemma 2

] Upper bounds t - > ~Radii aspect ratio of requests in every (J; is bounded if(k, €)

Lemma 3 (Theorem)

Lemma 1 JQ { Lemma 2 J - > - Requests in every (J; form an €e-scattering | A(€)

- > ; #iterations are bounded | h(k, e, A)
. - S—
_




Hybrid Clustering
Ld’" doesinot satisfy tri?__r;gle iInequality ‘ i

* Computing Upper bounds fails!

* Sampling lemma (Lemma 1) does not work!

* Radii Aspect Ratio lemma (Lemma 2) fails!

* |teration lemma (Lemma 3) does not apply since the new requests may not
be feasible!
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Initialization

No

If cost(X) > (1 +¢€) - OPT

Yes

Find a “witness” p € P to X d(p,X) > (1+¢€/10)-d(p,0)
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Update cluster constraint () i
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Initialization

No

If cost,.(X) > (1 +€) - OPT

Yes

Find a “witness” p € P to X d.(p,X) > (1 +¢€/10) -d,.(p, 0)

Guess cluster j € [k] of pin O

Update cluster constraint () i

Recompute X;




Initialization

If cost,.(X) > (1+€) - OPT

Yes

Find a “witness” p € P to X

Attempt 1

No

dr(pIX) > (1 T 6/10) ' dr(pl 0)

Guess cluster j € [k] of pin O

Recompute X;

1
7@ (pj,7))

Lo (p?72)

I A= (p]z,rps
_ +En o (p}1H
® .7

S .5 6 .6
® (Pj:’”p)



Attempt 1

Initialization

No

If cost,.(X) > (1 +€) - OPT

Yes

Find a “witness” p € P to X d.(p,X) > (1 +¢€/10) -d,.(p, 0)

Guess cluster j € [k] of pin O

Request may not be feasible!

think when d(p, X) = r

Recompute X;
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Yes
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Right way:
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N pballs _

Recompute X;




Attempt 1

Initialization

No

If cost(11eyr(X) > (1 +€) - OPT;

Yes
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Right way: - =
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Initialization

No

If cost(11eyr(X) > (1 +€) - OPT;

Yes

Find a “witness” p € P to X di1+eyr(0, X) > (1 +€/10) - d,-(p, 0) ,’

Guess cluster j € [k] of pin O

Right way: - =

_ -0
~work with (1 + €)r-radius balls instead of r-radius ‘77
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Recompute X;




Attempt 1

Initialization

No

If cost(11eyr(X) > (1 +€) - OPT;

Yes

Find a “witness” p € P to X d(1+e)r(p, X)>(1+¢€/10) -d,(p,0) ,'

Guess cluster j € [k] of pin O

Right way: - =

~work with (1 + €)r-radius balls instead of r-radius ‘77
. balls

Recompute X;
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Withess: d(1+6)7‘(p1 X) > (1 + 6/10) ' dr(p, 0)

d,- does not satisfy triangle inequality = FOCS’23 sampling fails
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Sampling Withess

Withess: d(1+6)7‘(p1 X) > (1 + 6/10) ' dr(p, 0) N

| Far away withesses }

% S ——ir—— =

d, does not satisfy triangle inequality. But, d,- = d when d,. = (7 /€)

........ o o
‘.,°.. ..‘.. . ‘
;. r ': © ® |,
:. 87" . 87"
.. / ‘ xl .'. / xZ . .
° - o .- e
°



Sampling Withess

Withess: d(1+e)r (p; X) > (1 T 6/10) - dy (p’ 0) }Far awah)llw;v-i;r?esses }

. T —— - e =

d, does not satisfy triangle inequality. But, d,- = d when d,. = (7 /€)

| Nearby witnesses | e .. ®
o T o T
e " ®
r . :. ® r .
87"/ ® x1 '..8r/ xz O .

. .o.. et ° o
el We show a simple sampling procedure for nearby witnesses ‘




Our Algorithm

Initialization Find a “witness” p € P to X
. No
f costzseyr(X) > (1 +€) - OPT If “Near witness” case
Yes
- (11 - b} Yes NO
Find a “witness” p € P to X dii+eyr(@,X) > (1 +€/10) - d,(p, 1)
. . Sample a nearby Ml Sample a faraway
Guess cluster j € |k] of pin O witness Withess
Add (p, T+€/100 to Q] Feasible cluster constraint Q]

Recompute X;




Summary

—

—— — — — — = ——

—_ - f———

| B — T ———— - —_

Showed a bi-criteria EPAS for Hybrid Clustering | | Derandomization?

~ Metric spaces with bounded scatter dimension I E
' - Constrained variants of

Hybrid Clustering?

e ——————————— |
. Norm objective of r-distances i capacities, outlier, fairness

Generalize FOCS’23 EPAS framework for r-distances | | Polynomial-time approximability®?

o - - |

Designed coresets for Hybrid Clustering in doubling dimensions |

-— = —  ——— — — - —

Thank You!

(18,6) is known
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