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Given a set of objects

Want to group them such that

objects in the same group are more “similar” to each other than to those in 
the other groups

Groups are called Clusters
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Set of potential centers — Facilities

Want to choose centers and assign every point to a closest center 

to minimize a clustering objective
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Center-based Clustering
• Input

𝑃𝑃: set of 𝑛𝑛 points

𝐹𝐹: set of facilities

𝑑𝑑: distance function on 𝑃𝑃 ∪ 𝐹𝐹

𝑘𝑘: positive integer

• Output
𝑋𝑋 ⊆ 𝐹𝐹: set of 𝑘𝑘 centers

• Minimize an objective 

𝑘𝑘-Median: ∑
𝑝𝑝∈𝑃𝑃

𝑑𝑑(𝑝𝑝,𝑋𝑋)

𝑘𝑘-Center: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑝𝑝∈𝑃𝑃

𝑑𝑑(𝑝𝑝,𝑋𝑋)

𝑘𝑘-Means:      ∑
𝑝𝑝∈𝑃𝑃

𝑑𝑑(𝑝𝑝,𝑋𝑋)2



Hybrid Clustering
• Interpolates between 𝑘𝑘-Median and 𝑘𝑘-Center

• Think of placing 𝑘𝑘 WiFi routers, each with coverage radius 𝑟𝑟

• Clients within coverage, pay 0 (zero)

• Clients outside coverage, pay the distance to the nearest ball

𝑟𝑟



Hybrid Clustering
• Interpolates between 𝑘𝑘-Median and 𝑘𝑘-Center

• Think of placing 𝑘𝑘 WiFi routers, each with coverage radius 𝑟𝑟

• Clients within coverage, pay 0 (zero)

• Clients outside coverage, pay the distance to the nearest ball

𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋): = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑(𝑝𝑝,𝑋𝑋) − 𝑟𝑟, 0} for 𝑋𝑋 ⊆ 𝐹𝐹

𝑟𝑟



Hybrid Clustering
• 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋): = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑑𝑑(𝑝𝑝,𝑋𝑋) − 𝑟𝑟, 0} 𝑟𝑟-distance

• Input

𝑃𝑃: set of 𝑛𝑛 points

𝐹𝐹: set of facilities

𝑘𝑘: positive integer

𝑑𝑑: distance function on 𝑃𝑃 ∪ 𝐹𝐹

𝑟𝑟: non-negative real

• Output
𝑋𝑋 ⊆ 𝐹𝐹: set of 𝑘𝑘 centers

• Minimize  

∑
𝑝𝑝∈𝑃𝑃

𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋)



Hybrid Clustering
Motivation

• Interpolates between 𝑘𝑘-Median and 𝑘𝑘-Center

• Shape Fitting

• Extension of Linear regression: Fitting “best” lines 

• Projective Clustering: Fitting “best” affine spaces 
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Literature
• Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi 

[Approx’ 24]

• 𝑟𝑟 = 0:𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋) = 𝑑𝑑(𝑝𝑝,𝑋𝑋) ⟹ 𝑘𝑘-Median

• 𝑟𝑟 = OPT𝑘𝑘𝑘𝑘:∑𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋) = 0 ⟹ 𝑘𝑘-Center OPT𝑘𝑘𝑘𝑘 = 𝑘𝑘-Center OPT

• No Uni-criteria approximations:     have to violate both—cost & radius

Hybrid k-Clustering: Blending k-Median and k-Center
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• Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi 
[Approx’ 24]

Literature

• Studied the problem in ℝ𝑑𝑑, where centers can be chosen anywhere

• For ℝ𝑑𝑑 ,designed (1 + 𝜖𝜖, 1 + 𝜖𝜖)-bicritera approximation

• whose cost using (1 + 𝜖𝜖)𝑟𝑟-radius balls is at most (1 + 𝜖𝜖)OPT𝑟𝑟
• in time FPT(𝑘𝑘,𝑑𝑑, 𝜖𝜖)

• No Uni-criteria approximations:     have to violate both—cost & radius

OPT cost using 𝑟𝑟-radius balls



Our Results

Substantially improve and generalize the results of Fomin at al.

Theorem 1.
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Theorem 1.
no 𝑑𝑑 here

For ℝ𝑑𝑑 ,design (1 + 𝜖𝜖, 1 + 𝜖𝜖)-bicritera approximation in time 2(𝑘𝑘𝑑𝑑/𝜖𝜖)𝑂𝑂(1)𝑛𝑛𝑂𝑂(1)

Fedor et al [Approx’24].
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2𝑂𝑂
˜
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Our Results

For ℝ𝑑𝑑 ,design (1 + 𝜖𝜖, 1 + 𝜖𝜖)-bicritera approximation in time FPT(𝑘𝑘, 𝜖𝜖)

Works for metric spaces with bounded (algorithmic) scatter dimension

Bounded Doubling Bounded Treewidth Planar Minor-closed

Works even when the objective is a monotone norm of 𝑟𝑟-distances

Theorem 1.

Generalizes the FOCS’23 framework of Abbasi* et al. to 𝑟𝑟-distances

* Parameterized Approximation Schemes for Clustering with General Norm Objectives
Abbasi, Banerjee, Byrka, Chalermsook, G., Khodamoradi, Marx, Sharma, Spoerhase

no 𝑑𝑑 here



Our Results

For ℝ𝑑𝑑 ,design (1 + 𝜖𝜖, 1 + 𝜖𝜖)-bicritera approximation in time FPT(𝑘𝑘, 𝜖𝜖)

Design coresets of size 2𝑂𝑂(𝑑𝑑𝑑𝑑𝑑(1/𝜖𝜖))𝑘𝑘𝑘𝑘𝑘𝑛𝑛 in doubling metrics of dimension 𝑑𝑑

Theorem 1.

Theorem 2.

Generalizes the FOCS’23 framework of Abbasi* et al. to 𝑟𝑟-distances

* Parameterized Approximation Schemes for Clustering with General Norm Objectives
Abbasi, Banerjee, Byrka, Chalermsook, G., Khodamoradi, Marx, Sharma, Spoerhase

no 𝑑𝑑 here



This talk
Theorem 1.

For ℝ𝑑𝑑 ,design (1 + 𝜖𝜖, 1 + 𝜖𝜖)-bicritera approximation in time FPT(𝑘𝑘, 𝜖𝜖)



This talk

• Idea based on EPAS framework of Abbasi et al. [FOCS’23], 

• (1 + 𝜖𝜖)-approximation running in time FPT(𝑘𝑘, 𝜖𝜖)

• for many clustering problems

• under any metric space that has bounded (algorithmic) scatter dimension

• in a unified manner

Theorem 1.

Unified-EPAS

EPAS: Efficient Parameterized Approximation Schemes
FPT-AS

For ℝ𝑑𝑑 ,design (1 + 𝜖𝜖, 1 + 𝜖𝜖)-bicritera approximation in time FPT(𝑘𝑘, 𝜖𝜖)



Unified-EPAS: Basic Idea
Consider the clustering corresponding to an optimal solution 𝑂𝑂

For each cluster 𝑗𝑗 ∈ [𝑘𝑘], we maintain a cluster constraint 𝑄𝑄𝑗𝑗

Each 𝑄𝑄𝑗𝑗 is a sequence of pairs (𝑝𝑝, 𝑟𝑟𝑝𝑝), where 𝑝𝑝 ∈Cluster 𝑗𝑗 and 𝑟𝑟𝑝𝑝 ≤ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

𝑜𝑜1
𝑜𝑜2

𝑜𝑜3



Unified-EPAS: Basic Idea
Consider the clustering corresponding to an optimal solution 𝑂𝑂

For each cluster 𝑗𝑗 ∈ [𝑘𝑘], we maintain a cluster constraint 𝑄𝑄𝑗𝑗

Each 𝑄𝑄𝑗𝑗 is a sequence of pairs (𝑝𝑝, 𝑟𝑟𝑝𝑝), where 𝑝𝑝 ∈Cluster 𝑗𝑗 and 𝑟𝑟𝑝𝑝 ≤ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

𝑜𝑜1
𝑜𝑜2

𝑜𝑜3



Unified-EPAS: Basic Idea
Consider the clustering corresponding to an optimal solution 𝑂𝑂

For each cluster 𝑗𝑗 ∈ [𝑘𝑘], we maintain a cluster constraint 𝑄𝑄𝑗𝑗
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Find 𝑋𝑋 = (𝑚𝑚1, … , 𝑚𝑚𝑘𝑘) such that 𝑚𝑚𝑖𝑖 satisfies all requests in 𝑄𝑄𝑖𝑖

𝑜𝑜1
𝑜𝑜2
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𝑜𝑜1 𝑜𝑜2



Unified-EPAS
Initialization 

𝑜𝑜1 𝑜𝑜2

𝑚𝑚1
𝑚𝑚2



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT Return 𝑋𝑋

Initialization 
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𝑚𝑚1
𝑚𝑚2
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If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT, then we 
can find a witness to 𝑋𝑋 w.h.p.

Lemma 1

Question:
Bound #iterations?



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

Lemma 1

Bound #iterations?

Question:

Upper Bounds

𝜖𝜖-scatter dimension

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT, then we 
can find a witness to 𝑋𝑋 w.h.p.



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Bound #iterations?

𝜖𝜖-scatter dimension



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

Fix 𝑄𝑄𝑗𝑗

𝑚𝑚𝑗𝑗1

𝑚𝑚𝑗𝑗2

𝑚𝑚𝑗𝑗3

𝑚𝑚𝑗𝑗4

𝑚𝑚𝑗𝑗5

𝑚𝑚𝑗𝑗6

(𝑝𝑝𝑗𝑗1, 𝑟𝑟𝑝𝑝1)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝2)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝3)

(𝑝𝑝𝑗𝑗4, 𝑟𝑟𝑝𝑝4)

(𝑝𝑝𝑗𝑗5, 𝑟𝑟𝑝𝑝5)

(𝑝𝑝𝑗𝑗6, 𝑟𝑟𝑝𝑝6)

> (1 + 𝜖𝜖)𝑟𝑟𝑝𝑝1

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝4

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝6

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Bound #iterations?

𝜖𝜖-scatter dimension



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

Fix 𝑄𝑄𝑗𝑗

𝑚𝑚𝑗𝑗1

𝑚𝑚𝑗𝑗2

𝑚𝑚𝑗𝑗3

𝑚𝑚𝑗𝑗4

𝑚𝑚𝑗𝑗5

𝑚𝑚𝑗𝑗6

(𝑝𝑝𝑗𝑗1, 𝑟𝑟𝑝𝑝1)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝2)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝3)

(𝑝𝑝𝑗𝑗4, 𝑟𝑟𝑝𝑝4)

(𝑝𝑝𝑗𝑗5, 𝑟𝑟𝑝𝑝5)

(𝑝𝑝𝑗𝑗6, 𝑟𝑟𝑝𝑝6)

> (1 + 𝜖𝜖)𝑟𝑟𝑝𝑝1

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝4

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝6

≤ 𝑟𝑟𝑝𝑝1

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Bound #iterations?

𝜖𝜖-scatter dimension



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

Fix 𝑄𝑄𝑗𝑗

𝑚𝑚𝑗𝑗1

𝑚𝑚𝑗𝑗2

𝑚𝑚𝑗𝑗3

𝑚𝑚𝑗𝑗4

𝑚𝑚𝑗𝑗5

𝑚𝑚𝑗𝑗6

(𝑝𝑝𝑗𝑗1, 𝑟𝑟𝑝𝑝1)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝2)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝3)

(𝑝𝑝𝑗𝑗4, 𝑟𝑟𝑝𝑝4)

(𝑝𝑝𝑗𝑗5, 𝑟𝑟𝑝𝑝5)

(𝑝𝑝𝑗𝑗6, 𝑟𝑟𝑝𝑝6)

> (1 + 𝜖𝜖)𝑟𝑟𝑝𝑝1

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝4

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝6

≤ 𝑟𝑟𝑝𝑝1

𝜖𝜖-scatter dimension of a metric space is 𝜆𝜆

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

𝜖𝜖-scattering

Bound #iterations?

𝜖𝜖-scatter dimension

if any 𝜖𝜖-scattering contains at most 𝜆𝜆 many triples with same radius  



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

Fix 𝑄𝑄𝑗𝑗

𝑚𝑚𝑗𝑗1

𝑚𝑚𝑗𝑗2

𝑚𝑚𝑗𝑗3

𝑚𝑚𝑗𝑗4

𝑚𝑚𝑗𝑗5

𝑚𝑚𝑗𝑗6

(𝑝𝑝𝑗𝑗1, 𝑟𝑟𝑝𝑝1)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝2)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝3)

(𝑝𝑝𝑗𝑗4, 𝑟𝑟𝑝𝑝4)

(𝑝𝑝𝑗𝑗5, 𝑟𝑟𝑝𝑝5)

(𝑝𝑝𝑗𝑗6, 𝑟𝑟𝑝𝑝6)

> (1 + 𝜖𝜖)𝑟𝑟𝑝𝑝1

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝4

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝6

≤ 𝑟𝑟𝑝𝑝1

𝜖𝜖-scatter dimension of a metric space is 𝜆𝜆

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

𝜖𝜖-scattering

Bound #iterations?

𝜖𝜖-scatter dimension

if radius aspect ratio is bounded, then the length is bounded



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗

Upper bounds Radii aspect ratio of requests in every 𝑄𝑄𝑗𝑗 is bounded

Lemma 2

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Bound #iterations?

Initialization 

Initialize Cluster constraints 
𝑄𝑄1, … ,𝑄𝑄𝑘𝑘 using upper bounds

Initialize solution 𝑋𝑋 = (𝑚𝑚1, … , 𝑚𝑚𝑘𝑘)
using 𝑄𝑄1, … ,𝑄𝑄𝑘𝑘

Compute Upper bounds

Upper Bounds



Unified-EPAS

Lemma 1 Lemma 2

Lemma 3 (Theorem)

Upper bounds 

Lemma 2

Radii aspect ratio of requests in every 𝑄𝑄𝑗𝑗 is bounded 𝑓𝑓(𝑘𝑘, 𝜖𝜖)

Requests in every 𝑄𝑄𝑗𝑗 form an 𝜖𝜖-scattering 𝜆𝜆(𝜖𝜖)

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT, then we can find a witness to 𝑋𝑋 w.h.p.

Lemma 1

𝑔𝑔(𝑘𝑘, 𝜖𝜖)

#iterations are bounded ℎ(𝑘𝑘, 𝜖𝜖, 𝜆𝜆)



Hybrid Clustering

• Computing Upper bounds fails!

• Sampling lemma (Lemma 1) does not work!

• Radii Aspect Ratio lemma (Lemma 2) fails!

• Iteration lemma (Lemma 3) does not apply since the new requests may not 
be feasible!

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality 𝑝𝑝

𝑚𝑚

𝑞𝑞



Hybrid Clustering

• Computing Upper bounds fails!

• Sampling lemma (Lemma 1) does not work!

• Radii Aspect Ratio lemma (Lemma 2) fails!

• Iteration lemma (Lemma 3) does not apply since the new requests may not 
be feasible!

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality 𝑝𝑝

𝑚𝑚

𝑞𝑞



Hybrid Clustering

• Computing Upper bounds fails!

• Sampling lemma (Lemma 1) does not work!

• Radii Aspect Ratio lemma (Lemma 2) fails!

• Iteration lemma (Lemma 3) does not apply since the new requests may not 
be feasible!

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality 𝑝𝑝

𝑚𝑚

𝑞𝑞



Hybrid Clustering

• Computing Upper bounds fails!

• Sampling lemma (Lemma 1) does not work!

• Radii Aspect Ratio lemma (Lemma 2) fails!

• Iteration lemma (Lemma 3) does not apply since the new requests may not 
be feasible!

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality 𝑝𝑝

𝑚𝑚

𝑞𝑞



Unified-EPAS

If c𝑘st(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗



Attempt 1

If c𝑘st𝑟𝑟(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗



Attempt 1

If c𝑘st𝑟𝑟(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗



Attempt 1

If c𝑘st𝑟𝑟(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Add 𝑝𝑝, 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑𝑟𝑟(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑂𝑂)

Update cluster constraint 𝑄𝑄𝑗𝑗?

𝑚𝑚𝑗𝑗1

𝑚𝑚𝑗𝑗2

𝑚𝑚𝑗𝑗3

𝑚𝑚𝑗𝑗4

𝑚𝑚𝑗𝑗5

𝑚𝑚𝑗𝑗6

(𝑝𝑝𝑗𝑗1, 𝑟𝑟𝑝𝑝1)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝2)

(𝑝𝑝𝑗𝑗2, 𝑟𝑟𝑝𝑝3)

(𝑝𝑝𝑗𝑗4, 𝑟𝑟𝑝𝑝4)

(𝑝𝑝𝑗𝑗5, 𝑟𝑟𝑝𝑝5)

(𝑝𝑝𝑗𝑗6, 𝑟𝑟𝑝𝑝6)

> (1 + 𝜖𝜖)𝑟𝑟𝑝𝑝1

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝4

(1 + 𝜖𝜖)𝑟𝑟𝑝𝑝6

≤ 𝑟𝑟𝑝𝑝1



Attempt 1

If c𝑘st𝑟𝑟(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes
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Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/10

to 𝑄𝑄𝑗𝑗
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∵⟹ uni-criteria approximation
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balls
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(1 + 𝜖𝜖)𝑟𝑟



Sampling Witness
Witness:  𝑑𝑑(1+𝜖𝜖)𝑟𝑟(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑂𝑂)

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality ⟹ FOCS’23 sampling fails



Sampling Witness
Witness:  𝑑𝑑(1+𝜖𝜖)𝑟𝑟(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑂𝑂)

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality. But, 𝑑𝑑𝑟𝑟 ≈ 𝑑𝑑 when 𝑑𝑑𝑟𝑟 = Ω(𝑟𝑟/𝜖𝜖)
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Sampling Witness
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Sampling Witness
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Sampling Witness
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Sampling Witness
Witness:  𝑑𝑑(1+𝜖𝜖)𝑟𝑟(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑂𝑂)

𝑑𝑑𝑟𝑟 does not satisfy triangle inequality. But, 𝑑𝑑𝑟𝑟 ≈ 𝑑𝑑 when 𝑑𝑑𝑟𝑟 = Ω(𝑟𝑟/𝜖𝜖)

8𝑟𝑟/𝜖𝜖
𝑚𝑚1 𝑚𝑚2

𝑟𝑟
8𝑟𝑟/𝜖𝜖

𝑟𝑟

Far away witnesses

Nearby witnesses

We show a simple sampling procedure for nearby witnesses



Our Algorithm

If c𝑘st(1+𝜖𝜖)𝑟𝑟(𝑋𝑋) > (1 + 𝜖𝜖) ⋅ OPT

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

Guess cluster 𝑗𝑗 ∈ [𝑘𝑘] of 𝑝𝑝 in 𝑂𝑂

Add 𝑝𝑝, 𝑑𝑑(𝑝𝑝,𝑋𝑋)
1+𝜖𝜖/100

to 𝑄𝑄𝑗𝑗

Recompute 𝑚𝑚𝑗𝑗

Return 𝑋𝑋

Initialization 

No

Yes

𝑑𝑑(1+𝜖𝜖)𝑟𝑟(𝑝𝑝,𝑋𝑋) > (1 + 𝜖𝜖/10) ⋅ 𝑑𝑑𝑟𝑟(𝑝𝑝,𝑂𝑂)

Find a “witness” 𝑝𝑝 ∈ 𝑃𝑃 to 𝑋𝑋

If “Near witness” case

Sample a nearby 
witness

Sample a faraway 
witness

Yes No

Feasible cluster constraint 𝑄𝑄𝑗𝑗



Summary
Showed a bi-criteria EPAS for Hybrid Clustering

Metric spaces with bounded scatter dimension

Norm objective of 𝑟𝑟-distances

Designed coresets for Hybrid Clustering in doubling dimensions

Derandomization?

Constrained variants of Hybrid Clustering?

Polynomial-time approximability?

𝑇𝑇ℎ𝑚𝑚𝑛𝑛𝑘𝑘 𝑌𝑌𝑜𝑜𝑌𝑌!

Generalize FOCS’23 EPAS framework for 𝑟𝑟-distances

(18,6) is known

capacities, outlier, fairness
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