Dimension-Free Parameterized Approximation Schemes for Hybrid Clustering

Ameet Gadekar

CISPA Helmholtz Center for Information Security Saarbrücken, Germany

07.03.2025

Tanmay Inamdar

Indian Institute of Technology Jodhpur Jodhpur, India

STACS 2025

Jena, Germany

Clustering

Given a set of objects

Want to group them such that

objects in the same group are more the other groups

objects in the same group are more "similar" to each other than to those in

Clustering

Given a set of objects

Want to group them such that

objects in the same group are more the other groups

objects in the same group are more "similar" to each other than to those in

Clustering

Given a set of objects

Want to group them such that

objects in the same group are more the other groups

objects in the same group are more "similar" to each other than to those in

Groups are called Clusters

Set of Objects — Points/Clients

Set of potential centers — Facilities

Want to choose centers and assign every point to a closest center

to minimize a clustering objective

Set of Objects — Points/Clients

Set of potential centers — Facilities

Want to choose centers and assign every point to a closest center

to minimize a clustering objective

Set of Objects — Points/Clients

Set of potential centers — Facilities

Want to choose centers and assign every point to a closest center

to minimize a clustering objective

- Input
 - *P*: set of *n* points
 - F: set of facilities
 - **d**: distance function on $P \cup F$
 - k: positive integer

• Output

 $X \subseteq F$: set of k centers

• Minimize an objective

k-	M	ed	lia	n:

$$\sum_{p\in P} d(p,X)$$

k-Center:

 $\max_{p \in P} d(p, X)$

k-Means:

$$\sum_{p \in P} d(p, X)^2$$

- Interpolates between k-Median and k-Center
- Think of placing k WiFi routers, each with coverage radius r
- Clients within coverage, pay 0 (zero)
- Clients outside coverage, pay the distance to the nearest ball

- Interpolates between k-Median and k-Center
- Think of placing k WiFi routers, each with coverage radius r
- Clients within coverage, pay 0 (zero)
- Clients outside coverage, pay the distance to the nearest ball

for $X \subseteq F$

- $d_r(p, X) := max\{d(p, X) r, 0\}$ *r*-distance
- Input
 - *P*: set of *n* points
 - *F*: set of facilities
 - k: positive integer
 - **d**: distance function on $P \cup F$
 - r: non-negative real

- Output $X \subseteq F$: set of k centers
- Minimize

 $\sum_{p\in P} d_r(p,X)$

Motivation

- Interpolates between k-Median and k-Center
- Shape Fitting
 - Extension of Linear regression: Fitting "best" lines
 - Projective Clustering: Fitting "best" affine spaces

Motivation

- Interpolates between k-Median and k-Center
- Shape Fitting
 - Extension of Linear regression: Fitting "best" lines
 - Projective Clustering: Fitting "best" affine spaces
 - Hybrid Clustering: Fitting "best" r-radius balls

Motivation

- Interpolates between k-Median and k-Center
- Shape Fitting
 - Extension of Linear regression: Fitting "best" lines
 - Projective Clustering: Fitting "best" affine spaces
 - Hybrid Clustering: Fitting "best" *r*-radius balls

Literature

- Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi [Approx' 24]
- $r = 0: d_r(p, X) = d(p, X) \Longrightarrow k$ -Median
- $r = OPT_{kc}: \sum d_r(p, X) = 0 \Longrightarrow k$ -Center $OPT_{kc} = k$ -Center OPT
- No Uni-criteria approximations:

have to violate both—cost & radius

Hybrid k-Clustering: Blending k-Median and k-Center

Literature

- Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi [Approx' 24]

No Uni-criteria approximations: have to violate both—cost & radius

Literature

- Recently introduced by Fomin, Golovach, Inamdar, Saurabh, Zehavi [Approx' 24]
- No Uni-criteria approximations:
- Studied the problem in \mathbb{R}^d , where centers can be chosen anywhere
- For \mathbb{R}^d , designed $(1 + \epsilon, 1 + \epsilon)$ -bicritera approximation OPT cost using r-radius balls • whose cost using $(1 + \epsilon)r$ -radius balls is at most $(1 + \epsilon)OPT_r$

 - in time $FPT(k, d, \epsilon)$

have to violate both—cost & radius

Substantially improve and generalize the results of Fomin at al.

Our Results

Fedor et al [Approx'24].

For \mathbb{R}^d , design $(1 + \epsilon, 1 + \epsilon)$ -bicritera approximation in time $2^{(kd/\epsilon)^{O(1)}} n^{O(1)}$

Fedor et al [Approx'24].

For \mathbb{R}^d , design $(1 + \epsilon, 1 + \epsilon)$ -bicritera approximation in time $2^{(kd/\epsilon)^{O(1)}} n^{O(1)}$

Works for metric spaces with bounded (algorithmic) scatter dimension

Bounded Doubling

Bounded Treewidth

Works even when the objective is a monotone norm of r-distances

* Parameterized Approximation Schemes for Clustering with General Norm Objectives Abbasi, Banerjee, Byrka, Chalermsook, G., Khodamoradi, Marx, Sharma, Spoerhase

Generalizes the FOCS'23 framework of Abbasi* et al. to r-distances

Generalizes the FOCS'23 framework of Abbasi* et al. to r-distances

Theorem 2.

* Parameterized Approximation Schemes for Clustering with General Norm Objectives Abbasi, Banerjee, Byrka, Chalermsook, G., Khodamoradi, Marx, Sharma, Spoerhase

Design coresets of size $2^{O(d\log(1/\epsilon))}k\log n$ in doubling metrics of dimension d

For \mathbb{R}^d , design $(1 + \epsilon, 1 + \epsilon)$ -bicritera approximation in time $FPT(k, \epsilon)$

This talk

- Idea based on EPAS framework of Abbasi et al. [FOCS'23],
 - $(1 + \epsilon)$ -approximation running in time $FPT(k, \epsilon)$
 - for many clustering problems
 - under any metric space that has bounded (algorithmic) scatter dimension
 - in a unified manner

This talk

For \mathbb{R}^d , design $(1 + \epsilon, 1 + \epsilon)$ -bicritera approximation in time $FPT(k, \epsilon)$

Unified-EPAS

EPAS: Efficient Parameterized Approximation Schemes FPT-AS

Unified-EPAS: Basic Idea

Consider the clustering corresponding to an optimal solution 0

For each cluster $j \in [k]$, we maintain a cluster constraint Q_j

Each Q_i is a sequence of pairs (p, r_p) , where $p \in Cluster j$ and $r_p \leq d(p, 0)$

Unified-EPAS: Basic Idea

Consider the clustering corresponding to an optimal solution O

For each cluster $j \in [k]$, we maintain a cluster constraint Q_j

Each Q_i is a sequence of pairs (p, r_p) , where $p \in Cluster j$ and $r_p \leq d(p, 0)$

Unified-EPAS: Basic Idea

- Consider the clustering corresponding to an optimal solution 0
- For each cluster $j \in [k]$, we maintain a cluster constraint Q_j
- *0*₃ *0*₂
- Each Q_j is a sequence of pairs (p, r_p) , where $p \in Cluster j$ and $r_p \leq d(p, 0)$ Find $X = (x_1, ..., x_k)$ such that x_i satisfies all requests in Q_i

Unified-EPAS

Unified-EPAS

Initialization

Lemma 1

If $cost(X) > (1 + \epsilon) \cdot OPT$, then we can find a witness to X w.h.p.

Question:

Bound #iterations?

Lemma 1

If $cost(X) > (1 + \epsilon) \cdot OPT$, then we can find a witness to X w.h.p.

Question:

Bound #iterations?

 ϵ -scatter dimension

Upper Bounds

Bound #iterations?

 ϵ -scatter dimension

Unified-EPAS

Lemma 1

If $cost(X) > (1 + \epsilon) \cdot OPT$, then we can find a witness to X w.h.p.

 $g(k,\epsilon)$

Radii aspect ratio of requests in every Q_i is bounded

- Computing Upper bounds fails!
- Sampling lemma (Lemma 1) does not work!
- Radii Aspect Ratio lemma (Lemma 2) fails!
- be feasible!

- Computing Upper bounds fails!
- Sampling lemma (Lemma 1) does not work!
- Radii Aspect Ratio lemma (Lemma 2) fails!
- be feasible!

- Computing Upper bounds fails!
- Sampling lemma (Lemma 1) does not work!
- Radii Aspect Ratio lemma (Lemma 2) fails!
- be feasible!

- Computing Upper bounds fails!
- Sampling lemma (Lemma 1) does not work!
- Radii Aspect Ratio lemma (Lemma 2) fails!
- be feasible!

Unified-EPAS

$d_r(p, X) > (1 + \epsilon/10) \cdot d_r(p, 0)$

$d_r(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

$$T(r) > (1 + \epsilon/10) \cdot d_r(p, 0)$$

think when $d(p, X) \approx r$

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

 d_r does not satisfy triangle inequality \implies FOCS'23 sampling fails

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

- d_r does not satisfy triangle inequality. But, $d_r \approx d$ when $d_r = \Omega(r/\epsilon)$

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

- d_r does not satisfy triangle inequality. But, $d_r \approx d$ when $d_r = \Omega(r/\epsilon)$

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

 d_r does not satisfy triangle inequality. But, $d_r \approx d$ when $d_r = \Omega(r/\epsilon)$

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

- d_r does not satisfy triangle inequality. But, $d_r \approx d$ when $d_r = \Omega(r/\epsilon)$

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$

 d_r does not satisfy triangle inequality. But, $d_r \approx d$ when $d_r \doteq \Omega(r/\epsilon)$

Witness: $d_{(1+\epsilon)r}(p,X) > (1 + \epsilon/10) \cdot d_r(p,0)$ Far away witnesses d_r does not satisfy triangle inequality. But, $d_r \approx d$ when $d_r \doteq \Omega(r/\epsilon)$

Our Algorithm

Summary

Showed a bi-criteria EPAS for Hybrid Clustering

Metric spaces with bounded scatter dimension

Norm objective of r-distances

Generalize FOCS'23 EPAS framework for *r*-distances

Designed coresets for Hybrid Clustering in doubling dimensions

Thank You!

-	-