
1

Dynamic Unit-Disk Range Reporting

Haitao Wang and Yiming Zhao

University of Utah Metropolitan State University of Denver

42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)
March 05, 2025
Jena, Germany

Full version: https://arxiv.org/pdf/2501.00120

https://arxiv.org/pdf/2501.00120

Static UDRR: Given a set 𝑃𝑃 of 𝑛𝑛 points in the plane and a value 𝑟𝑟 > 0,

build a data structure such that given any query disk of radius 𝑟𝑟, all points of 𝑃𝑃 within
the query disk can be reported.

Unit disk range reporting (UDRR) problem

Dynamic UDRR: Points of 𝑃𝑃 can be inserted and deleted.
2

𝑃𝑃
𝑟𝑟

Static UDRR: Related work and our results

3

Preprocessing Performance Query Time, 𝑘𝑘 is the output size

Chazelle and Edelsbrunner, 1985 𝑂𝑂(𝑛𝑛2) time and 𝑂𝑂(𝑛𝑛) space 𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘)

Reduce UDRR to the half-space
range reporting queries in 3D

(works for query disk of arbitrary
radius), and Afshani and Chan’s 3D

half-space range reporting data
structure (2009)

𝑂𝑂(𝑛𝑛 log 𝑛𝑛) expected time (due to
Ramos’ algorithm (1999), to

construct shallow cuttings for a set
of planes in 3D) and 𝑂𝑂(𝑛𝑛) space

𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘)

Same as above but using a
deterministic shallow cutting

algorithm by Chan and Tsakalidis
(2016)

𝑂𝑂(𝑛𝑛 log 𝑛𝑛) deterministic time and
𝑂𝑂(𝑛𝑛) space 𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘)

Our results, much simpler 𝑂𝑂(𝑛𝑛 log 𝑛𝑛) deterministic time and
𝑂𝑂(𝑛𝑛) space 𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘)

Dynamic UDRR: Related work and our results

Previous work:

1. Reduce it to dynamic halfspace range reporting in 3D using the standard lifting
transformation.

2. The currently best result: 𝑂𝑂(𝑛𝑛 log 𝑛𝑛) space, 𝑂𝑂(log3+𝜀𝜀 𝑛𝑛) amortized insertion time,
𝑂𝑂(log5+𝜀𝜀 𝑛𝑛) amortized deletion time, and 𝑶𝑶(𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐 𝒏𝒏

𝐥𝐥𝐥𝐥𝐥𝐥 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏
+ 𝒌𝒌) query time, where 𝜀𝜀 is an

arbitrarily small positive constant and 𝑘𝑘 is the output size.

Our result:
Optimal 𝑶𝑶(𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏 + 𝒌𝒌) query time, and the space and the update time complexities are
the same as above.

4

𝑃𝑃: a dynamic set of points in the plane. Determine whether a query unit disk contains any
point of 𝑃𝑃, and if so, return such a point.

Previous work:

Using a dynamic nearest neighbor search data structure [Chan, 2020]. 𝑂𝑂(𝑛𝑛) space, 𝑂𝑂(log2 𝑛𝑛)
amortized insertion time, 𝑂𝑂(log4 𝑛𝑛) amortized deletion time, and 𝑂𝑂(log2 𝑛𝑛) query time.

Our result:

𝑂𝑂(𝑛𝑛) space, 𝑂𝑂(log1+𝜀𝜀 𝑛𝑛) amortized insertion time, 𝑂𝑂(log1+𝜀𝜀 𝑛𝑛) amortized deletion time, and
𝑂𝑂(log 𝑛𝑛) query time.

5

Dynamic unit-disk range emptiness queries

A grid technique
𝑅𝑅: a region in the plane
𝑃𝑃(𝑅𝑅): the subset of points of 𝑃𝑃 inside 𝑅𝑅.
𝐷𝐷𝑞𝑞: the unit disk centered at point 𝑞𝑞.

We use a set of grid cells to capture the proximity
information for the points of 𝑃𝑃. To handle updates to 𝑃𝑃, we
define a conforming coverage 𝒞𝒞 for 𝑃𝑃 as a set of cells
(axis-parallel rectangle).

1. The union of all cells of 𝒞𝒞 covers all the points of 𝑃𝑃.
2. Each cell 𝐶𝐶 ∈ 𝒞𝒞 is associated with a subset 𝑁𝑁(𝐶𝐶) ∈ 𝒞𝒞 of

𝑂𝑂(1) neighboring cells, such that for any point 𝑞𝑞 ∈ 𝐶𝐶,
𝑃𝑃 𝐷𝐷𝑞𝑞 ⊆ ⋃𝐶𝐶′∈𝑁𝑁 𝐶𝐶 𝑃𝑃 𝐶𝐶′ .

3. For any point 𝑞𝑞, if 𝑞𝑞 is not in any cell of 𝒞𝒞, then 𝑃𝑃 ∩
𝐷𝐷𝑞𝑞 = ∅. 6

≤ 1/2

𝐶𝐶

𝑁𝑁(𝐶𝐶)

Maintain the grid dynamically

1. A conforming coverage set 𝒞𝒞 of 𝑂𝑂(𝑛𝑛) cells for 𝑃𝑃 can be maintained in 𝑂𝑂(𝑛𝑛) space (𝑛𝑛 is
the size of the current set 𝑃𝑃).

2. Each point insertion of 𝑃𝑃: 𝑂𝑂(log 𝑛𝑛) worst-case time.
3. Each point deletion of 𝑃𝑃: 𝑂𝑂(log 𝑛𝑛) amortized time.
4. Given any point 𝑞𝑞, determine whether 𝑞𝑞 is in a cell 𝐶𝐶 of 𝒞𝒞, and if so, return 𝐶𝐶 and 𝑁𝑁(𝐶𝐶):

𝑂𝑂(log 𝑛𝑛) time.

Corollary: A static conforming coverage can be built in 𝑂𝑂(𝑛𝑛) space and 𝑂𝑂(𝑛𝑛 log 𝑛𝑛) time.

7

Line-separable UDRR problem
Given a query disk 𝐷𝐷𝑞𝑞 centered at 𝑞𝑞,
1. If 𝑞𝑞 is not in a cell of 𝒞𝒞, then 𝑃𝑃 ∩ 𝐷𝐷𝑞𝑞 = ∅, we

return null.
2. If 𝑞𝑞 ∈ 𝐶𝐶 ∈ 𝒞𝒞, we report all points of 𝑃𝑃 in 𝐶𝐶. For

every neighboring cell 𝐶𝐶′ ∈ 𝑁𝑁(𝐶𝐶), we have the
the line-separable UDRR in both static and
dynamic version.

3. A point 𝑝𝑝 ∈ 𝑃𝑃 is in 𝐷𝐷𝑞𝑞 iff 𝑞𝑞 is above the arc
centered at 𝑝𝑝. The arc below ℓ is 𝒙𝒙-monotone.

8

𝑞𝑞

𝒞𝒞

𝑞𝑞𝐶𝐶

𝐶𝐶𝐶 𝑝𝑝
ℓ

Static line-separable UDRR algorithm
1. 𝒰𝒰1: the lower envelope of all arcs centered

at points in 𝐶𝐶𝐶 below line ℓ.
2. 𝒰𝒰1 is spliced with several arcs. We find

out the arc that spans point 𝑞𝑞.
3. If 𝑞𝑞 is below this arc, then no arc is below

𝑞𝑞 and we return null.
4. If 𝑞𝑞 is above this arc, then the center of

such an arc can be reported.
5. Moving leftwards and rightwards on the

lower envelope to check whether 𝑞𝑞 is
above the next arc until we firstly see 𝑞𝑞 is
below an arc or we see line ℓ.

6. We remove all arcs in 𝒰𝒰1 and run the
above procedure on the next lower
envelope layer 𝒰𝒰2, 𝒰𝒰3, … until 𝑞𝑞 is below
a lower envelope. 9

ℓ

𝐶𝐶𝐶

𝐶𝐶

Static UDRR algorithm
1. Lower envelope layers {𝒰𝒰1,𝒰𝒰2, … } can be computed in

𝑂𝑂(|𝐶𝐶𝐶| log |𝐶𝐶𝐶|) time and 𝑂𝑂(|𝐶𝐶𝐶|) space by considering its
dual problem: computing lower 𝛂𝛂-hull layers.

2. The computation of lower 𝛂𝛂-hull layers follows the
scheme of Chazelle’s algorithm in 1985 for computing
convex hull layers.

3. A fractional cascading data structure is used on the
vertices of the lower envelope layers so that given any
point 𝑞𝑞, the arc spanning 𝑞𝑞 in 𝒰𝒰1 is reported in 𝑂𝑂(log 𝑛𝑛)
time and the arc spanning 𝑞𝑞 in other envelope layers is
reported in 𝑂𝑂 1 time each. The query time is
𝑂𝑂(log 𝐶𝐶′ + 𝑘𝑘).

10

Build such a data structure for every non-empty cell in the conforming coverage set 𝒞𝒞 with
respect to each of its supporting line. The static UDRR can be solved in 𝑂𝑂(𝑛𝑛 log 𝑛𝑛) time and 𝑂𝑂(𝑛𝑛)
space, and the query time is 𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘).

Dynamic line-separable UDRR algorithm
1. The problem requires reporting arcs of a dynamic set that are below

a query point.
2. The 𝑘𝑘-lowest-arcs queries: Given a query vertical line ℓ∗ and a

number 𝑘𝑘 ≥ 1, report the 𝑘𝑘 lowest arcs intersecting ℓ∗.
3. [Chan, 2000]: If each 𝑘𝑘-lowest-arcs query can be answered in

𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘) time, then the arcs of a dynamic set below a query
point can be reported in 𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘) time.

4. We adapt the technique for a similar problem: Dynamically maintain
a set of lines to report the 𝒌𝒌-lowest lines at a query vertical line.
1) [Chan, 2012]: 𝑂𝑂(𝑛𝑛 log 𝑛𝑛) space, 𝑂𝑂(log6+𝜀𝜀 𝑛𝑛) amortized update

time, and 𝑂𝑂(log 𝑛𝑛 + 𝑘𝑘) query time.
2) [De Berg and Staals, 2023]: for planes in 3D, 𝑂𝑂(𝑛𝑛 log 𝑛𝑛) space,

𝑂𝑂(log3+𝜀𝜀 𝑛𝑛) amortized insertion time, 𝑂𝑂(log5+𝜀𝜀 𝑛𝑛) amortized
deletion time, and 𝑂𝑂(log2 𝑛𝑛/log log 𝑛𝑛 + 𝑘𝑘) query time.

11

ℓ∗

A new shallow cutting algorithm for arcs

Theorem: There exist constants 𝐵𝐵, 𝐶𝐶, and 𝐶𝐶𝐶, such that for a parameter 𝑘𝑘 ∈ [1, 𝑛𝑛], we can
compute a (𝐵𝐵𝑖𝑖𝑘𝑘)-shallow (𝐶𝐶𝐵𝐵𝑖𝑖𝑘𝑘/𝑛𝑛)-cutting of size at most 𝐶𝐶𝐶 𝑛𝑛

𝐵𝐵𝑖𝑖𝑘𝑘
in the bottom-open pseudo-

trapezoid form, along with conflict lists of all its cells, for all 𝑖𝑖 = 0,1, … , log𝐵𝐵
𝑛𝑛
𝑘𝑘
, in

𝑂𝑂(𝑛𝑛 log 𝑛𝑛
𝑘𝑘

) time.

Corollary: We can compute a 𝑘𝑘-shallow (𝐶𝐶𝐶𝐶/𝑛𝑛)-cutting of size 𝑂𝑂(𝑛𝑛
𝑘𝑘

), along with its conflict
lists, in 𝑂𝑂(𝑛𝑛 log 𝑛𝑛

𝑘𝑘
) time.

12

1. Using our shallow cutting algorithm for arcs and a generalized partition tree technique
([Matoušek, 1992] and [Wang, 2023]): A set of 𝑛𝑛 arcs can be maintained in 𝑂𝑂(𝑛𝑛) space to
support 𝑂𝑂(log 𝑛𝑛) amortized time deletions and 𝑂𝑂(𝑛𝑛 log𝑂𝑂(1) 𝑛𝑛 + 𝑘𝑘) time 𝑘𝑘-lowest-arcs
queries.

2. Following the scheme of [De Berg and Staals, 2023] and apply our shallow cutting
algorithm for arcs: For any fixed 𝑟𝑟, a set of 𝑛𝑛 arcs can be maintained in 𝑂𝑂(𝑛𝑛 log 𝑟𝑟) space
to support 𝑂𝑂(𝑟𝑟 log 𝑛𝑛) amortized time deletions and 𝑂𝑂(log 𝑟𝑟 + 𝑛𝑛

𝑟𝑟
+ 𝑘𝑘) time 𝑘𝑘-lowest-arcs

queries.

13

Two deletion-only data structures for 𝑘𝑘-lowest-
arcs queries

Γ :a dynamic set of arcs, which initially is ∅, and undergoes 𝑛𝑛 updates (insertions
and deletions).

For any 𝑏𝑏 ≥ 2, we can maintain a collection of shallow cuttings 𝑻𝑻𝒊𝒊
𝒋𝒋 in the bottom-open

pseudo-trapezoid form, 𝑖𝑖 = 1,2, … , ⌈log 𝑛𝑛⌉, 𝑗𝑗 = 1,2, … , 𝑂𝑂(log𝑏𝑏 𝑛𝑛), such that,

1. The conflict list of every cell of every cutting only undergoes deletions after its creation.
2. For any 𝑘𝑘 ≥ 1, let 𝑖𝑖𝑘𝑘 = log 𝑛𝑛

𝐶𝐶𝑘𝑘
for a sufficiently large constant 𝐶𝐶. For any vertical

line ℓ∗, if an arc 𝛾𝛾 ∈ Γ is among the 𝑘𝑘 lowest arcs at ℓ∗, then there exists a 𝑗𝑗 such that 𝛾𝛾 is
in the conflict list 𝐿𝐿Δ𝑗𝑗 of the cell ∆𝑗𝑗 ∈ 𝑇𝑇𝑖𝑖𝑘𝑘

𝑗𝑗 intersecting ℓ∗.

Dynamic line-separable UDRR algorithm

14

Dynamic line-separable UDRR algorithm

15

Answer a 𝑘𝑘-lowest-arcs query with a query vertical line ℓ∗.
1. We have a group of shallow cuttings 𝑻𝑻𝒊𝒊𝒌𝒌

𝒋𝒋 , where 𝑗𝑗 =
1,2, … , 𝑂𝑂(log𝑏𝑏 𝑛𝑛).

2. For every 𝑗𝑗, we compute cell ∆𝑗𝑗 ∈ 𝑇𝑇𝑖𝑖𝑘𝑘
𝑗𝑗 intersecting ℓ∗.

1) For each 𝑖𝑖, maintain a dynamic interval tree to store the
intervals of the 𝑥𝑥-projections of the cuttings 𝑻𝑻𝒊𝒊

𝒋𝒋 for all 𝑗𝑗.
3. Find the 𝑘𝑘 lowest arcs from all conflict lists 𝐿𝐿∆𝑗𝑗 for all 𝑗𝑗.

1) Use our different deletion-only data structures for 𝑘𝑘-lowest-arcs
queries for lists 𝐿𝐿Δ𝑗𝑗 depending on whether |𝐿𝐿∆𝑗𝑗| ≥ log3 𝑛𝑛.

2) A technique of querying multiple 𝑘𝑘-lowest-arcs data structures
simultaneously [De Berg and Staals, 2023] is applied.

4. Our dynamic line-separable UDRR algorithm: 𝑂𝑂(|𝐶𝐶𝐶| log |𝐶𝐶𝐶|)
space, 𝑂𝑂(log3+𝜀𝜀 |𝐶𝐶𝐶|) amortized insertion time, 𝑂𝑂(log5+𝜀𝜀 |𝐶𝐶𝐶|)
amortized deletion time, and 𝑂𝑂(log |𝐶𝐶𝐶| + 𝑘𝑘) query time.

ℓ∗

𝑻𝑻𝒊𝒊𝒌𝒌
𝒋𝒋

16

THANKS

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

