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A small example

Let M=4 and ten jobs of sizes {1,2,4,7,9,11,12,14,15,16}

• Assume that an algorithm creates the bags 

{2,9,15} with the sum 26,  {4,16} with the sum 20

{7,11} with the sum 18, {1,12,14} with the sum 27

• If m=M=4, the makespan is 27.

• If m=3, two bags are to be merged. 

If {4,16} is merged with {7,11}, the resulting bag has 

sum 38, and this is the makespan.

• If m=2, bags are to be merged to obtain two bags. 

If the first two bags are merged and the next 

two bags are also merged, the makespan is 46. 

If (instead) the first three bags are merged (and 

the fourth one is not merged), the makespan is 64.
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• Various simple and also non-trivial algorithms were 

designed. The study is of the approximation ratio: the 

worst-case ratio between the cost (makespan) of the 

algorithm and that of an optimal solution.

• The problem was generalized to uniformly related machines 

(machines with speeds), such that the number of machines is 

known, but the speeds are unknown.

• Identical machines are a special case where speed are binary (0 

or 1(.

• The problem was studied also with respect to jobs that can be 

split arbitrarily (so the only input is M or M and the number of 

bags b, if b>M). The case of jobs of size 1 was studied as well.

• Stein & Zhong 2020, Eberle, Hoeksma, Megow, Nölke, Schewior, 

& Simon, 2021,2023, Balkanski, Ou, Stein, & Wei 2023, Minařík

&  Sgall, 2023.
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Work on the subject



An example for the adversarial model
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𝑶𝑷𝑻𝒊 is the 

optimal 

makespan for 

i machines.



Is it possible to find an optimal solution?

A solution consists of a set of bags, where for every 

value of m, the algorithm computes a schedule using 

the bags (by assigning them to machines).

– The computation has to run in polynomial time.

– Even if computation in exponential time is allowed, 

the previous example shows that it is not possible to 

obtain optimal solutions. 

– The limitations are based on the lack of knowledge of 

m (similarly to online algorithms), and on running 

times.

• But jobs are not presented one by one.

– Known lower bounds of the approximation ratio are 

based on the lack of knowledge of m.
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The stochastic model

• It is not possible to win in the adversarial model, 

because the adversary is strong.

– It knows the number of machines, while the algorithm does 

not know it.

– An optimal solution does not need to create bags, but it just 

assigns jobs to machines, and those are the bags that it uses

• In the stochastic model, every number of machines m 

has a probability. The cost is the expected value of the 

makespan, based on solutions that the algorithm would 

create for different values of m.

• An optimal solution also does not necessarily have an 

optimal solution for every value of m, since its objective 

is defined as for the algorithm.

• The difficulty of an algorithm is computational.
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An example

For M=5 and 10 jobs of size 1 each:

Assume that the probability vector for m=2,3,4,5 is

(0.15,0.35,0.2,0.3)

• Assume that the algorithm creates the bags:

{1,1,1},{1,1},{1,1},{1,1},{1} (or {1,1,1},{1,1,1},{1,1},{1},{1}) 

The four makespans are: 5, 4, 3, 3, and the cost of the 

algorithm is 𝟎. 𝟏𝟓 ⋅ 𝟓 + 𝟎. 𝟑𝟓 ⋅ 𝟒 + 𝟎. 𝟐 ⋅ 𝟑 + 𝟎. 𝟑 ⋅ 𝟑 = 𝟑. 𝟔𝟓.

• Assume that the algorithm creates the bags:

{1,1},{1,1},{1,1},{1,1},{1,1}

The four makespans are: 6, 4, 4, 2, and the cost of the 

algorithm is 𝟎. 𝟏𝟓 ⋅ 𝟔 + 𝟎. 𝟑𝟓 ⋅ 𝟒 + 𝟎. 𝟐 ⋅ 𝟒 + 𝟎. 𝟑 ⋅ 𝟐 = 𝟑. 𝟕.

• But for the probabilities (0.4, 0.2, 0.2, 0.2) the first 

partition into bags is better (cost 4 versus 4.4). 
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Approximation schemes

An approximation scheme is a class of algorithms of 

cost (makespan) not exceeding the cost of an optimal 

solution times 1 + ε for any ε>0.

• PTAS – the running time is polynomial in the input size 

but ε is seen as a constant. 

For example, 𝒏
𝟏

𝜺𝟑 is allowed.

• EPTAS – the running time is a function of ε times a 

polynomial in the input size. 

Here, 𝒏
𝟏

𝜺𝟑 is not allowed but 
𝟏

𝜺𝟐

𝟏

𝜺𝟑 ⋅ 𝒏𝟐 is allowed.

• FPTAS – the running time is polynomial in the input 

size and in 
1

ε
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• Every algorithm for the adversarial model can be 

used for the stochastic model without increasing the 

approximation ratio, but can one do much better?

• We saw that an approximation scheme cannot be 

found in the adversarial model.

– But in the stochastic model it turns out to be 

possible

• An FPTAS does not exist in the stochastic model unless 

P=NP 

– The special case with one value of m with a non-zero 

probability is equivalent to the problem where the 

number of machines is known (to be this value of m).

– The problem is NP-hard in the strong sense.

– This holds also for other objectives
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Approximation schemes for standard 

scheduling on identical machines

• The algorithm knows the number of machines and 

simply assigns the input jobs.

• PTAS’s/EPTAS’s for various objectives including 

makepsan: Hochbaum and Shmoys 1987, Woeginger, 

1997, Alon, Azar, Woeginger, and Yadid, 1997, 1998.

– It is not possible to use one solution for all 

objectives, but if the objective is known and satisfies 

reasonable properties, it is possible to approximate 

within 1+ in polynomial time.

• The difficulty of finding an optimal solution is due to 

NP-hardness.

– If exponential time can be used, an optimal solution can be 

obtained (for example by testing all possible solutions).
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Previous work and our results

Buchem, Eberle, Kasuya Rosado, Schewior, & Wiese, 

2024 designed a PTAS (which is not an EPTAS) for 

makepsan minimization.

We design an EPTAS using other methods.

They also studied the maximization problem also called 

“The Santa Claus Problem” and designed a PTAS for this 

problem. In this problem the objective is to maximize the 

minimum machine completion time.

We design an EPTAS for the maximization problem 

and also for a third objective, which is ℓ𝒑 norm 

minimization.

We will discuss makespan minimization first.
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What can be said about the cost of an 

optimal solution?

• This cost OPT is a convex combination of values of 

makespan.

• Here, 𝑶𝑷𝑻𝒊 is not the optimal cost for i machines, but it 

is the optimal cost for i machines for an optimal 

partition into bags, which may be much larger for some 

values of i.

• Still,  we can show for the largest job size 𝑝max and for 

the number of jobs, n, that pmax ≤ 𝑶𝑷𝑻𝒊 ≤ 𝒏 ⋅ 𝒑𝒎𝒂𝒙

• This means in particular that pmax ≤ 𝑶𝑷𝑻 ≤ 𝒏 ⋅ 𝒑𝒎𝒂𝒙

– Which allows us to guess OPT up to a multiplicative 

factor of 1 + 𝜀.

• This is helpful, but only the beginning of the sequence 

of transformations.
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Rounding and reducing the number of 

bag sizes and job sizes

• For jobs, rounding is standard.

• Since we guessed OPT, it is not possible to have larger 

jobs, because this means that for every number of 

machines the makespan is larger than OPT, and the 

convex combination is larger.

• A bag size also cannot be larger than OPT, by a similar 

reasoning.

• A size of a bag is the total size of its jobs. It can be 

rounded up slightly so that there is a constant number 

of bag sizes that are at least 𝛆 ⋅ 𝐎𝐏𝐓.

• We would like to have bag sizes that are at least 𝛆 ⋅ 𝐎𝐏𝐓, 

which is achieved by merging bags. As a result some 

bags become empty, and we allow bags of size zero.
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Small numbers of machines

• For very small numbers of machines, a greedy 

assignment of every set of bags (after rounding and 

reducing the list of possible bag sizes) leads to a very 

good solution.

– The reason is that all bags are very small compared 

to the makespan.

– When the number of machines is small, every 

machine gets a large total size.

• A small number of machines is defined based on 

parameters of the problem and the required solution: 

Total size of jobs, 𝜀, the guess of OPT.

– Those machines are not taken into account in the 

following steps.
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Histogram of makespans

• Seeing 𝑶𝑷𝑻𝒊 as a function of i, this is a monotonically 

non-increasing function.

• It is possible to select representative values of i to 

reduce the number of different values of makespan.

• However, the regularity of representatives should not be 

based on differences between number of machines.

– It has to be based on probabilities.

• It is possible to draw a histogram with rectangles for 

machines, where the width of a value of i is its 

probability, and select makespans with equal distances.
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The algorithm will increase makespans slightly by 

extending makespans to the right. A lower bound is found 

by extending to the left and finding the difference.
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Rounding the histogram 

via “Linear grouping”

The goal is to have a short 

list of makespans that can 

be guessed (enumerated)

The difference between the 

areas which correspond to 

costs is O 𝜀 ⋅ 𝑂𝑃𝑇



Towards an IP 

• There is a constant (a function of 𝜀) number of job sizes 

(after rounding).

• A template of a bag consists of the number of jobs 

of each size that it should contain

– The number of templates is bounded from above 

because the number of bag sizes is a constant.

• A configuration of a machine consists of the number of 

bags of each template that it has.
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• For a fixed number of machines (any 𝑚 ∈ 2,3,… ,𝑀 ) we 

fixed a makespan, so the configuration of each 

machine has to have total size not exceeding the 

makespan.

• Every job has to be assigned to a template of a bag, and 

for every m, every copy of a template needs be assigned 

to a configuration of the corresponding value of m.

• Expressing this as an IP allows us to solve it and find a 

solution (if it exists for the specific guess) efficiently.
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Differences with the maximization problem

• The objective function value for m machines is the 

minimum completion time of any machine.

– The convex combination which is the final profit of the 

algorithm is of these values for m=2,3,…,M.

• The function 𝑶𝑷𝑻𝒊 is still monotonically non-increasing.

• An easier part is that neglecting specific machine numbers 

just means that bags can be assigned arbitrarily – we can 

assume that the profit is simply zero.

• A harder part is that for a value of m that we expect to get 

profit from, during rounding one has to keep a total 

sufficient size of jobs for each machine.

• It is also harder to find suitable bounds on OPT. The 

bounds are per value of m. In particular, one large job does 

not mean that the profit will be large.
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Additional tricks for maximization

Buchem, Eberle, Kasuya Rosado, Schewior, & Wiese, 2024 designed a 

PTAS, but our EPTAS uses a different approach.

The “scenarios” for different machine numbers have four 

parts rather than two:

1. Scenarios with very large numbers of machines, for which 

the profit is very small, and no gain is planned for them. This is 

a suffix of the list of scenarios.

2. A consecutive sequence of scenarios with small total 

probability that will separate a prefix from the most important 

scenarios creating a gap for the profits. It is selected based on 

specific guesses.

3. The resulting prefix for which the number of machines is small 

for each scenario and a greedy schedule is sufficiently good.

4. The remaining scenarios which have to be dealt with carefully.
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The differences with ℓ𝑝 norm 

minimization
• The objective function value for a fixed value of m is the ℓ𝑝

norm (for p>1) of the vector of machine completion times. 

• The function 𝑶𝑷𝑻𝒊 is monotonically non-increasing.

• It is easier to find a good solution for a specific number 

of machines because one machine does not increase the 

objective much (unlike the case of makespan).

• However, bounding OPT based on job sizes is harder.

– A configuration of a machine of a large total 

could still be useful.

– A large bag template can still be useful.

• For multiple number of machines, it becomes much 

harder to see what is happening.
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Additional tricks for ℓ𝑝 norm minimization

• Here, we design the first approximation scheme for the problem.

• Based on a histogram of costs (which are ℓ𝑝 norms) for 

different numbers of machines, reasonable total sizes are 

defined for machines that have multiple bags.

– Jobs that are very large have their own bags.

• The scenarios are split into three parts.

– There is no suffix as for the maximization problem

– The prefix is not fixed (based on parameters including 

guesses) as for makespan minimization, and it is found 

carefully but finding a middle subsequence of small total 

probability that will create a gap.

– The middle sequence has to be scheduled such that it 

does not add a cost that is too large, unlike the 

maximization problem where the schedule for those 

scenarios does not matter.
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Discussion

• The studied problem is different from other scheduling 

problems:

– The schedule is defined in two stages.

– For the stochastic variant, a convex combination of 

makespan values is considered.

– For other objectives a convex combination is 

analyzed as well

• Can the method of rounding the histogram be used for 

other problems?

• Are there other interesting objectives for the same 

problem?


