Efficiently computing the minimum rank of a matrix in a monoid of zero-one matrices joint work with Stefan Kiefer

Andrew Ryzhikov

MIMUW, University of Warsaw, Poland

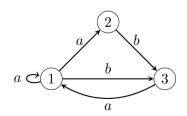
STACS 2025

• Consider a set $\mathcal{A} = \{A_1, \ldots, A_m\}$ of zero-one matrices.

- Consider a set $\mathcal{A} = \{A_1, \ldots, A_m\}$ of zero-one matrices.
- Let \mathcal{M} be the monoid generated by \mathcal{A} (the set of all their products).

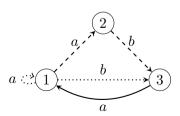
- Consider a set $\mathcal{A} = \{A_1, \ldots, A_m\}$ of zero-one matrices.
- Let \mathcal{M} be the monoid generated by \mathcal{A} (the set of all their products).
- When is \mathcal{M} finite?

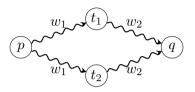
$$M(a) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad M(b) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$



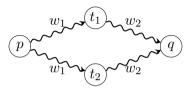
- Consider a set $\mathcal{A} = \{A_1, \ldots, A_m\}$ of zero-one matrices.
- Let \mathcal{M} be the monoid generated by \mathcal{A} (the set of all their products).
- When is \mathcal{M} finite?

$$M(a) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad M(b) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

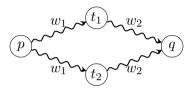




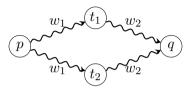
• \mathcal{M} is finite if and only if it does not have diamonds.



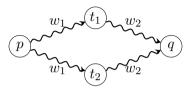
• \mathcal{M} is finite if and only if it does not have diamonds. Can be tested in NL and in quadratic time.



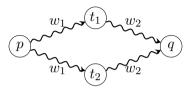
- \mathcal{M} is finite if and only if it does not have diamonds. Can be tested in NL and in quadratic time.
- Having no diamonds means that we never have 1 + 1 in any of our computations when multiplying the matrices.



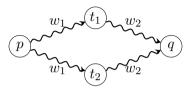
- \mathcal{M} is finite if and only if it does not have diamonds. Can be tested in NL and in quadratic time.
- Having no diamonds means that we never have 1 + 1 in any of our computations when multiplying the matrices. In particular, it does not matter which semiring we are over.



- \mathcal{M} is finite if and only if it does not have diamonds. Can be tested in NL and in quadratic time.
- Having no diamonds means that we never have 1 + 1 in any of our computations when multiplying the matrices. In particular, it does not matter which semiring we are over.
- We call such monoids zero-one matrix monoids.



- \mathcal{M} is finite if and only if it does not have diamonds. Can be tested in NL and in quadratic time.
- Having no diamonds means that we never have 1 + 1 in any of our computations when multiplying the matrices. In particular, it does not matter which semiring we are over.
- We call such monoids zero-one matrix monoids.
- Viewed as automata, they are often called *unambiguous finite (semi-)automata*.



- \mathcal{M} is finite if and only if it does not have diamonds. Can be tested in NL and in quadratic time.
- Having no diamonds means that we never have 1 + 1 in any of our computations when multiplying the matrices. In particular, it does not matter which semiring we are over.
- We call such monoids zero-one matrix monoids.
- Viewed as automata, they are often called *unambiguous finite (semi-)automata*. Note the "semi-" part!

• Which properties of such matrix monoids are efficiently decidable?

- Which properties of such matrix monoids are efficiently decidable?
- If \mathcal{M} is a zero-one matrix monoid, the average

$$\bar{A} = \frac{1}{m} \sum_{1 \le i \le m} A_i$$

has spectral radius at most one. Moreover, \bar{A} has eigenvalue one if and only if \mathcal{M} contains the zero matrix.

- Which properties of such matrix monoids are efficiently decidable?
- If \mathcal{M} is a zero-one matrix monoid, the average

$$\bar{A} = \frac{1}{m} \sum_{1 \le i \le m} A_i$$

has spectral radius at most one. Moreover, \bar{A} has eigenvalue one if and only if \mathcal{M} contains the zero matrix.

Theorem (Kiefer, Mascle, STACS 2019) One can decide whether ${\cal M}$ contains the zero matrix in $NC^2.$

- Which properties of such matrix monoids are efficiently decidable?
- If \mathcal{M} is a zero-one matrix monoid, the average

$$\bar{A} = \frac{1}{m} \sum_{1 \le i \le m} A_i$$

has spectral radius at most one. Moreover, \overline{A} has eigenvalue one if and only if \mathcal{M} contains the zero matrix.

Theorem (Kiefer, Mascle, STACS 2019) One can decide whether ${\cal M}$ contains the zero matrix in $NC^2.$

Indeed, it's enough to check if $\overline{A}x = x$ has a non-zero solution.

Minimum rank

• What if \mathcal{M} does not contain the zero matrix?

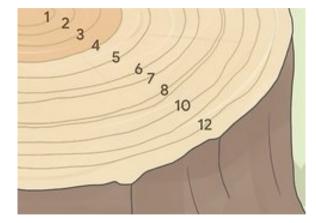
- What if \mathcal{M} does not contain the zero matrix?
- The Černy conjecture says that if \mathcal{M} contains a matrix of rank one, then such a matrix can be represented as a product of at most $(n-1)^2$ matrices from $\{A_1, \ldots, A_m\}$ (with repetitions).

- What if \mathcal{M} does not contain the zero matrix?
- The Černy conjecture says that if \mathcal{M} contains a matrix of rank one, then such a matrix can be represented as a product of at most $(n-1)^2$ matrices from $\{A_1, \ldots, A_m\}$ (with repetitions).
- Originally it is stated for complete DFAs (matrices with exactly one 1 in every row), but can be generalised to the case of zero-one matrix monoids.

- What if \mathcal{M} does not contain the zero matrix?
- The Černy conjecture says that if \mathcal{M} contains a matrix of rank one, then such a matrix can be represented as a product of at most $(n-1)^2$ matrices from $\{A_1, \ldots, A_m\}$ (with repetitions).
- Originally it is stated for complete DFAs (matrices with exactly one 1 in every row), but can be generalised to the case of zero-one matrix monoids.
- Similarly, the rank conjecture generalises it to products of length $(n-r)^2$ in the case of minimum rank $r \ge 1$.

- What if \mathcal{M} does not contain the zero matrix?
- The Černy conjecture says that if \mathcal{M} contains a matrix of rank one, then such a matrix can be represented as a product of at most $(n-1)^2$ matrices from $\{A_1, \ldots, A_m\}$ (with repetitions).
- Originally it is stated for complete DFAs (matrices with exactly one 1 in every row), but can be generalised to the case of zero-one matrix monoids.
- Similarly, the rank conjecture generalises it to products of length $(n-r)^2$ in the case of minimum rank $r \ge 1$.
- Minimum rank of a matrix is computable in polynomial time (Carpi, TCS 1988 + Kiefer, Mascle, STACS 2019).

Why are these problems nice?



• Carpi's method of computing the minimum rank is "greedy" and inherently sequential: apply certain words decreasing the rank until you can.

- Carpi's method of computing the minimum rank is "greedy" and inherently sequential: apply certain words decreasing the rank until you can.
- It's also "combinatorial", while Kiefer-Mascle treatment of the zero-rank case is linear-algebraic.

- Carpi's method of computing the minimum rank is "greedy" and inherently sequential: apply certain words decreasing the rank until you can.
- It's also "combinatorial", while Kiefer-Mascle treatment of the zero-rank case is linear-algebraic.
- If the minimum rank is positive, can we still compute it by linear algebra (in NC^2)?

- Carpi's method of computing the minimum rank is "greedy" and inherently sequential: apply certain words decreasing the rank until you can.
- It's also "combinatorial", while Kiefer-Mascle treatment of the zero-rank case is linear-algebraic.
- If the minimum rank is positive, can we still compute it by linear algebra (in NC²)?– Wasn't known even for DFAs.

Theorem (Kiefer, A.R., STACS 2025) Yes.

Theorem (Kiefer, A.R., STACS 2025) Given a zero-one matrix monoid, one can compute the minimum rank of a matrix in it in NC^2 .

• Assume that \mathcal{M} does not contain the zero matrix.

- Assume that \mathcal{M} does not contain the zero matrix.
- Let α and β be the left and the right eigenvectors of the average of its generators (remember \bar{A} ?) with $\alpha^T \beta = 1$.

Theorem (Kiefer, A.R., STACS 2025) For every matrix M in \mathcal{M} we have $\alpha^T M \beta = 1$.

- Assume that \mathcal{M} does not contain the zero matrix.
- Let α and β be the left and the right eigenvectors of the average of its generators (remember \bar{A} ?) with $\alpha^T \beta = 1$.

Theorem (Kiefer, A.R., STACS 2025) For every matrix M in \mathcal{M} we have $\alpha^T M \beta = 1$.

• By using this result, we define nicely behaving weights of states in the unambiguous automaton.

- Assume that \mathcal{M} does not contain the zero matrix.
- Let α and β be the left and the right eigenvectors of the average of its generators (remember \bar{A} ?) with $\alpha^T \beta = 1$.

Theorem (Kiefer, A.R., STACS 2025) For every matrix M in \mathcal{M} we have $\alpha^T M \beta = 1$.

- By using this result, we define nicely behaving weights of states in the unambiguous automaton.
- Some sort of Kraft–McMillan (in)equality?

• Can one find a matrix of minimum rank in a zero-one matrix monoid in NC?

• Can one find a matrix of minimum rank in a zero-one matrix monoid in NC? Not known even for complete DFAs (one 1 per row).

- Can one find a matrix of minimum rank in a zero-one matrix monoid in NC? Not known even for complete DFAs (one 1 per row).
- Given two matrices generating a zero-one matrix monoid, can we multiply them faster than in $\mathcal{O}(n^{\omega})$?

- Can one find a matrix of minimum rank in a zero-one matrix monoid in NC? Not known even for complete DFAs (one 1 per row).
- Given two matrices generating a zero-one matrix monoid, can we multiply them faster than in $\mathcal{O}(n^{\omega})$?
- If \mathcal{M} contains the zero matrix, Kiefer and Mascle showed that this matrix can be represented as a product of at most n^5 generators. The best known lower bound is n(n+1)/2. Can we do anything about that?

