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Zero-one matrix monoids

• Consider a set A = {A1, . . . , Am} of zero-one matrices.

• Let M be the monoid generated by A (the set of all their products).

• When is M finite?

M(a) =

1 1 0
0 0 0
1 0 0

 M(b) =

0 0 1
0 0 1
0 0 0
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Diamonds

p

t1

q

t2

w1 w2

w1 w2

• M is finite if and only if it does not have diamonds.

Can be tested in NL and in
quadratic time.

• Having no diamonds means that we never have 1+ 1 in any of our computations when
multiplying the matrices. In particular, it does not matter which semiring we are over.

• We call such monoids zero-one matrix monoids.

• Viewed as automata, they are often called unambiguous finite (semi-)automata.
Note the “semi-” part!
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Matrix mortality

• Which properties of such matrix monoids are efficiently decidable?

• If M is a zero-one matrix monoid, the average

Ā =
1

m

∑
1≤i≤m

Ai

has spectral radius at most one. Moreover, Ā has eigenvalue one if and only if M
contains the zero matrix.

Theorem (Kiefer, Mascle, STACS 2019)

One can decide whether M contains the zero matrix in NC2.

• Indeed, it’s enough to check if Āx = x has a non-zero solution.

4 / 12



Matrix mortality

• Which properties of such matrix monoids are efficiently decidable?

• If M is a zero-one matrix monoid, the average
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4 / 12



Matrix mortality

• Which properties of such matrix monoids are efficiently decidable?

• If M is a zero-one matrix monoid, the average
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Minimum rank

• What if M does not contain the zero matrix?

• The Černy conjecture says that if M contains a matrix of rank one, then such a
matrix can be represented as a product of at most (n− 1)2 matrices from
{A1, . . . , Am} (with repetitions).

• Originally it is stated for complete DFAs (matrices with exactly one 1 in every row),
but can be generalised to the case of zero-one matrix monoids.

• Similarly, the rank conjecture generalises it to products of length (n− r)2 in the case
of minimum rank r ≥ 1.

• Minimum rank of a matrix is computable in polynomial time (Carpi, TCS 1988 +
Kiefer, Mascle, STACS 2019).
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Why are these problems nice?
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But how nice are they?

• Carpi’s method of computing the minimum rank is “greedy” and inherently
sequential: apply certain words decreasing the rank until you can.

• It’s also “combinatorial”, while Kiefer-Mascle treatment of the zero-rank case is
linear-algebraic.

• If the minimum rank is positive, can we still compute it by linear algebra (in NC2)?–
Wasn’t known even for DFAs.
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Yes

Theorem (Kiefer, A.R., STACS 2025)

Yes.
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Minimum rank in NC2

Theorem (Kiefer, A.R., STACS 2025)

Given a zero-one matrix monoid, one can compute the minimum

rank of a matrix in it in NC2.

9 / 12



*A* main ingredient

• Assume that M does not contain the zero matrix.

• Let α and β be the left and the right eigenvectors of the average of its generators
(remember Ā?) with αTβ = 1.

Theorem (Kiefer, A.R., STACS 2025)

For every matrix M in M we have αTMβ = 1.

• By using this result, we define nicely behaving weights of states in the unambiguous
automaton.

• Some sort of Kraft–McMillan (in)equality?
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Open problems

• Can one find a matrix of minimum rank in a zero-one matrix monoid in NC?

Not
known even for complete DFAs (one 1 per row).

• Given two matrices generating a zero-one matrix monoid, can we multiply them
faster than in O(nω)?

• If M contains the zero matrix, Kiefer and Mascle showed that this matrix can be
represented as a product of at most n5 generators. The best known lower bound is
n(n+ 1)/2. Can we do anything about that?
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Thank you!
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