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Introduction to Delta-Matroids

Delta-matroids are an extension of matroids introduced by Bouchet in the 1980s.

A delta-matroid is defined by a pair (V ,F):

• A finite set V .

• A family of subsets F ⊆ 2V (feasible sets).

It satisfies the following axiom, called the symmetric exchange axiom.

For any sets A,B ∈ F and any element x ∈ A∆B, there exists an element y ∈ A∆B such that:

A∆{x , y} ∈ F ,

where ∆ denotes the symmetric difference, i.e., A∆X = (A \ X ) ∪ (X \ A).

The bases of a matroid are defined using the symmetric exchange axiom along with the

condition that all F ∈ F have the same cardinality.
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Examples of Delta-Matroids

• Basis Delta-Matroid: F consists of the bases of a matroid.

• Matching Delta-Matroid: Given a graph G = (V ,E ), F is the family of subsets F such

that the subgraph G [F ] has a perfect matching.

a b

c d

F = {∅, {a, b}, {b, c}, {c , d},
{a, b, c , d}}

It is not possible to define something analogous to matroid truncation.

Example: F = {∅, {a, b}, {c , d}} does not satisfy the symmetric exchange axiom.
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Linear Representation of Delta-Matroids

A matrix A is called skew-symmetric if it satisfies AT = −A.

Linear Representation of a Delta-Matroid:

• Consider a skew-symmetric matrix A with rows and columns labeled by a set V .

• Define F = {F ⊆ V | A[F ] is nonsingular}, where A[F ] denotes the submatrix of A

restricted to rows and columns indexed by F .

Then, D(A) = (V ,F) defines a delta-matroid.

Example: The Tutte matrix provides a linear rep. of matching delta-matroids.

a b

c d


a b c d

a 0 xab 0 0

b −xab 0 xbc 0

c 0 −xbc 0 xcd
d 0 0 −xcd 0

 F = {∅, {a, b}, {b, c}, {c , d},
{a, b, c , d}}

Caveat. ∅ is always feasible in D(A).
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Linear Representation Using Twist

The definition of the twist operation for a subset S ⊆ V of a delta-matroid is:

D = (V ,F)
twist by S−−−−−−→ D∆S = (V , {F∆S | F ∈ F}).

Existing method: A linear representation is given by a skew-symmetric matrix and

a subset S ⊆ V as D(A)∆S .

Example: When F = {{a, c}, {a, d}, {b, c}, {b, d}}, a representation is given by

D(A)∆{a, c}, where

A =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 since F(D(A)) = {∅, {a, b}, {c , d}, {a, b, c , d}}
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Linear Representation Using Contraction

The definition of the contraction operation for a subset T ⊆ V of a delta-matroid is:

D = (V ,F)
contraction by T−−−−−−−−−→ D/T = (V \ T , {F \ T | F ∈ F ,T ⊆ F}).

Proposed method: A linear representation is given by a skew-symmetric matrix and

a subset T ⊆ V as D(A)/T .

Example: When F = {{a, c}, {a, d}, {b, c}, {b, d}}, a representation is given by D(A)/{e, f },
where

A =



a b c d e f

a 0 0 0 0 1 0

b 0 0 0 0 1 0

c 0 0 0 0 0 1

d 0 0 0 0 0 1

e −1 −1 0 0 0 0

f 0 0 −1 −1 0 0


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Equivalence between twist representation and contraction representation 1

Suppose that a twist representaiton D(A)∆S is given for A ∈ FV×V .

Then, a contraction reprsentation is give by D(A∗)/T , where A∗ is indexed by V ∪ T :

A∗ =


T S V \ S

T A[S ] −I −A[S ,V \ S ]
S I O O

V \ S −A[V \ S ,S ] O A[V \ S ]


Theorem: A twist representation can be converted to a contraction representation in O(n2)

time.
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Equivalence between twist representation and contraction representation 2

Suppose that a contraction representaiton D(A)/T is given for A ∈ F(V∪T )×(V∪T ).

Then, a twist reprsentation is given by D(A∗)∆F , where F is a fixed feasible set:

A∗ =


F F

F B−1[F ] B−1[F ,T ∪ F ]A[T ∪ F ,F ]

F A[F ,T ∪ F ]B−1[F ,T ∪ F ] A[F ] + A[F ,T ∪ F ]B−1A[T ∪ T ,F ]

,

and B = (A[T ∪ F ])−1, which is well-defined.

Theorem: A contraction representation can be converted to a twist representation in O(nω)

time.
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Delta-Matroid Intersection Problem

Problem: Given Di = (V ,Fi ), i = 1, 2, determine if there exists an F ∈ F1 ∩ F2.

The delta-matroid intersection problem generalizes the matroid parity problem:

• D1: A delta-matroid consisting of the bases of a matroid.

• D2: A matching delta-matroid derived from a 1-regular graph.

Previous work: An O(nω+1) time algorithm.

Our work: A randomized O(nω) time algorithm.

Maximization problem: Given Di = (V ,Fi ) for i = 1, 2, find the largest F ∈ F1 ∩ F2.

Previous work: A polynomial-time algorithm remains unknown.

Difficulty: Twisting is difficult to work with.

Our work: A randomized O(nω+1) time algorithm.
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Delta-Matroid Intersection Algorithm

Based on the contraction representation, an O(nω) time algorithm can be derived.

Given skew-symmetric matrices Ai labeled by V ∪ Ti , let Di = D(Ai )/Ti . Define:

A12 =


V1 ∪ T1 V2 ∪ T2

V1 ∪ T1 A1 O

V2 ∪ T2 O A2

 and B′ =



V1 T1 V2 T2

V1 O O B O

T1 O O O O

V2 −B O O O

T2 O O O O


where B is a diagonal matrix whose diagonal entries correspond to yv z for each v (where yv and z are variables).

Define A = A12 + B′, then: Pf A =
∑

V ′⊆V ±zn−|V ′| · Pf A1[V ′
1 ∪ T1] · Pf A2[V ′

2 ∪ T2]
∏

v∈V\V ′ yv .

Here, V ′
i ⊆ Vi denotes the subset of Vi corresponding to V ′.

⇒ The minimum exponent of z corresponds to the size of the maximum common feasible set.

Theorem: Maximum common feasible set can be found in randomized polynomial time.

Tomohiro Koana 9/10



Delta-Matroid Intersection Algorithm

Based on the contraction representation, an O(nω) time algorithm can be derived.

Given skew-symmetric matrices Ai labeled by V ∪ Ti , let Di = D(Ai )/Ti . Define:

A12 =


V1 ∪ T1 V2 ∪ T2

V1 ∪ T1 A1 O

V2 ∪ T2 O A2

 and B′ =



V1 T1 V2 T2

V1 O O B O

T1 O O O O

V2 −B O O O

T2 O O O O


where B is a diagonal matrix whose diagonal entries correspond to yv z for each v (where yv and z are variables).

Define A = A12 + B′, then: Pf A =
∑

V ′⊆V ±zn−|V ′| · Pf A1[V ′
1 ∪ T1] · Pf A2[V ′

2 ∪ T2]
∏

v∈V\V ′ yv .

Here, V ′
i ⊆ Vi denotes the subset of Vi corresponding to V ′.

⇒ The minimum exponent of z corresponds to the size of the maximum common feasible set.

Theorem: Maximum common feasible set can be found in randomized polynomial time.

Tomohiro Koana 9/10



Delta-Matroid Intersection Algorithm

Based on the contraction representation, an O(nω) time algorithm can be derived.

Given skew-symmetric matrices Ai labeled by V ∪ Ti , let Di = D(Ai )/Ti . Define:

A12 =


V1 ∪ T1 V2 ∪ T2

V1 ∪ T1 A1 O

V2 ∪ T2 O A2

 and B′ =



V1 T1 V2 T2

V1 O O B O

T1 O O O O

V2 −B O O O

T2 O O O O


where B is a diagonal matrix whose diagonal entries correspond to yv z for each v (where yv and z are variables).

Define A = A12 + B′, then: Pf A =
∑

V ′⊆V ±zn−|V ′| · Pf A1[V ′
1 ∪ T1] · Pf A2[V ′

2 ∪ T2]
∏

v∈V\V ′ yv .

Here, V ′
i ⊆ Vi denotes the subset of Vi corresponding to V ′.

⇒ The minimum exponent of z corresponds to the size of the maximum common feasible set.

Theorem: Maximum common feasible set can be found in randomized polynomial time.

Tomohiro Koana 9/10



Delta-Matroid Intersection Algorithm

Based on the contraction representation, an O(nω) time algorithm can be derived.

Given skew-symmetric matrices Ai labeled by V ∪ Ti , let Di = D(Ai )/Ti . Define:

A12 =


V1 ∪ T1 V2 ∪ T2

V1 ∪ T1 A1 O

V2 ∪ T2 O A2

 and B′ =



V1 T1 V2 T2

V1 O O B O

T1 O O O O

V2 −B O O O

T2 O O O O


where B is a diagonal matrix whose diagonal entries correspond to yv z for each v (where yv and z are variables).

Define A = A12 + B′, then: Pf A =
∑

V ′⊆V ±zn−|V ′| · Pf A1[V ′
1 ∪ T1] · Pf A2[V ′

2 ∪ T2]
∏

v∈V\V ′ yv .

Here, V ′
i ⊆ Vi denotes the subset of Vi corresponding to V ′.

⇒ The minimum exponent of z corresponds to the size of the maximum common feasible set.

Theorem: Maximum common feasible set can be found in randomized polynomial time.

Tomohiro Koana 9/10



Concluding remarks

Other results:

• The delta-sum of linear delta-matroids is also a linear delta-matroid.

• Transformation from projected linear delta-matroids to elementary ones.

• Decision problem → search problem (takes O(n) time overhead for maximization).

Open question: Since the proposed method is randomized, is derandomization possible?

Remark: An FPT paper on delta-matroids on arXiv

FPT algorithms over linear delta-matroids with applications

Eduard Eiben, Tomohiro Koana, Magnus Wahlström

Thank you
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