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Introduction to Delta-Matroids

Delta-matroids are an extension of matroids introduced by Bouchet in the 1980s.
A delta-matroid is defined by a pair (V, F):

o A finite set V.
e A family of subsets 7 C 2V (feasible sets).

It satisfies the following axiom, called the symmetric exchange axiom.

Tomohiro Koana 1/10



Introduction to Delta-Matroids

Delta-matroids are an extension of matroids introduced by Bouchet in the 1980s.
A delta-matroid is defined by a pair (V, F):

e A finite set V.
e A family of subsets F C 2V (feasible sets).
It satisfies the following axiom, called the symmetric exchange axiom.
For any sets A, B € F and any element x € AAB, there exists an element y € AAB such that:

AA{x,y} € F,
where A denotes the symmetric difference, i.e., AAX = (A\ X) U (X \ A).

Tomohiro Koana 1/10



Introduction to Delta-Matroids

Delta-matroids are an extension of matroids introduced by Bouchet in the 1980s.
A delta-matroid is defined by a pair (V, F):

e A finite set V.
e A family of subsets F C 2V (feasible sets).
It satisfies the following axiom, called the symmetric exchange axiom.
For any sets A, B € F and any element x € AAB, there exists an element y € AAB such that:

AA{x,y} € F,
where A denotes the symmetric difference, i.e., AAX = (A\ X) U (X \ A).

The bases of a matroid are defined using the symmetric exchange axiom along with the
condition that all F € F have the same cardinality.
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Examples of Delta-Matroids

e Basis Delta-Matroid: F consists of the bases of a matroid.
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Examples of Delta-Matroids

e Basis Delta-Matroid: F consists of the bases of a matroid.

e Matching Delta-Matroid: Given a graph G = (V,E), F is the family of subsets F such
that the subgraph G[F] has a perfect matching.

(@—b) F = {0, {a, b}, {b, c}, {c, d}.
e e {a,b,c,d}}

It is not possible to define something analogous to matroid truncation.
Example: F = {0, {a, b}, {c, d}} does not satisfy the symmetric exchange axiom.
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Linear Representation of Delta-Matroids

A matrix A is called skew-symmetric if it satisfies AT = —A.

Linear Representation of a Delta-Matroid:

e Consider a skew-symmetric matrix A with rows and columns labeled by a set V.

e Define F = {F C V | A[F] is nonsingular}, where A[F] denotes the submatrix of A
restricted to rows and columns indexed by F.

Then, D(A) = (V, F) defines a delta-matroid.

Tomohiro Koana 3/10



Linear Representation of Delta-Matroids

A matrix A is called skew-symmetric if it satisfies AT = —A.

Linear Representation of a Delta-Matroid:

e Consider a skew-symmetric matrix A with rows and columns labeled by a set V.

e Define F = {F C V | A[F] is nonsingular}, where A[F] denotes the submatrix of A
restricted to rows and columns indexed by F.

Then, D(A) = (V, F) defines a delta-matroid.

Example: The Tutte matrix provides a linear rep. of matching delta-matroids.

e a b c d
'E' a 0 Xab 0 0
b 0 e O F ={0,{a, b}, {b,c},{c,d},
e 0 c 0 —Xbe 0 X {a’ b, c, d}}
d 0 0 —Xeg O

Caveat. () is always feasible in D(A).
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Linear Representation Using Twist

The definition of the twist operation for a subset S C V of a delta-matroid is:

twist by S
) ——

D=(V,F DAS = (V,{FAS | F € F}).
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Linear Representation Using Twist

The definition of the twist operation for a subset S C V of a delta-matroid is:

D=(V,F) 2> pAS = (V,{FAS | F € F}).
Existing method: A linear representation is given by a skew-symmetric matrix and
a subset S C V as D(A)AS.

Example: When F = {{a, c},{a,d},{b,c},{b,d}}, a representation is given by
D(A)A{a, c}, where

since F(D(A)) = {0,{a, b}, {c.d},{a, b,c,d}}

=
o O O
o O
O = O O
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Linear Representation Using Contraction

The definition of the contraction operation for a subset T C V of a delta-matroid is:

contraction by T
%

D= (V,F) D/T=(V\T,{F\T|FeF, TCF}).
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Linear Representation Using Contraction

The definition of the contraction operation for a subset T C V of a delta-matroid is:

D= (V,F)retn Y T, p/T = (V\T,{F\ T |Fe F,TCF}).
Proposed method: A linear representation is given by a skew-symmetric matrix and
asubset T C V as D(A)/T.

Example: When F = {{a, c},{a,d},{b,c},{b,d}}, a representation is given by D(A)/{e, f},

where

a b c d e f

a 0 0 0 0 1 0

b 0 0 0 0 1 0

A— c 0 0 0 0 0 1

d 0 0 0 0 01

e -1 -1 0 0 0 O

f 0 0O -1 -1 0 O
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Equivalence between twist representation and contraction representation 1

Suppose that a twist representaiton D(A)AS is given for A € FV*V.
Then, a contraction reprsentation is give by D(A*)/ T, where A* is indexed by V U T:

T S V\S
T A[S] —1 —A[S,V\S]
A= g5 / 0 o}

VAS \ -A[V\S,S] O AV S]
Theorem: A twist representation can be converted to a contraction representation in O(n?)
time.
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Equivalence between twist representation and contraction representation 2

Suppose that a contraction representaiton D(A)/T is given for A € F(VUT)x(VUT),
Then, a twist reprsentation is given by D(A*)AF, where F is a fixed feasible set:

F F
F B1[F] B~1[F, T UF]A[T UF,F]
F\AF, TUF|BY[F,TUF] A[F|+A[F, TUF]|B*A[TUT,F]
and B = (A[T U F])~1, which is well-defined.

A* =
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Theorem: A contraction representation can be converted to a twist representation in O(n*)

A* =

time.
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Delta-Matroid Intersection Problem

Problem: Given D; = (V,F;), i = 1,2, determine if there exists an F € F; N F>.
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Delta-Matroid Intersection Algorithm

Based on the contraction representation, an O(n“) time algorithm can be derived.

Given skew-symmetric matrices A; labeled by V U T;, let D; = D(A;)/T;. Define:

i i Va T,

iuTy VLaUT, i[O O B O

Ay = ViU Ty Aq (0] and B! — T1 (0] o O 0]
VU T, (0] Az Vo, | -B O O O

T> (0] O O O

where B is a diagonal matrix whose diagonal entries correspond to y,z for each v (where y, and z are variables).
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where B is a diagonal matrix whose diagonal entries correspond to y,z for each v (where y, and z are variables).
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Delta-Matroid Intersection Algorithm

Based on the contraction representation, an O(n“) time algorithm can be derived.

Given skew-symmetric matrices A; labeled by V U T;, let D; = D(A;)/T;. Define:

i i Va T,

iuTy VLaUT, i[O O B O

App = ViU Ty Aq (0] and B! — T1 (0] o O 0]
VU T, (0] Az Vo, | -B O O O

T> (0] O O O

where B is a diagonal matrix whose diagonal entries correspond to y,z for each v (where y, and z are variables).
Define A = A1y + B/, then: PfA =Y,y 2"~ V'L PF AL [V] U Ti] - PF Ay [ V5 U To] TT,e v vr o
Here, Vi/ C V; denotes the subset of V; corresponding to V'.

= The minimum exponent of z corresponds to the size of the maximum common feasible set.

Theorem: Maximum common feasible set can be found in randomized polynomial time.
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Concluding remarks

Other results:

e The delta-sum of linear delta-matroids is also a linear delta-matroid.
e Transformation from projected linear delta-matroids to elementary ones.

e Decision problem — search problem (takes O(n) time overhead for maximization).

Open question: Since the proposed method is randomized, is derandomization possible?
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Other results:

e The delta-sum of linear delta-matroids is also a linear delta-matroid.

e Transformation from projected linear delta-matroids to elementary ones.

e Decision problem — search problem (takes O(n) time overhead for maximization).
Open question: Since the proposed method is randomized, is derandomization possible?

Remark: An FPT paper on delta-matroids on arXiv
FPT algorithms over linear delta-matroids with applications
Eduard Eiben, Tomohiro Koana, Magnus Wahlstrom

Thank you
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