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Edge Coloring

Definition: An edge coloring of a graph G = (V ,E ) is an assignment of colors to E

so that no two adjacent edges share the same color.

A
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D

E

Chromatic Index χ′(G ): the minimum number of colors needed to edge-color G .

Vizing’s Theorem: For any simple graph G with maximum degree ∆(G ),

∆(G ) ≤ χ′(G ) ≤ ∆(G ) + 1.

NP-hardness: Determining the chromatic index is NP-hard even for ∆ = 3.
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Motivation: Runtime

Edge Coloring: A fundamental special case of graph coloring (on line graphs).

State of the art: Coloring can be solved in O∗(2n) time via subset convolution.

Central question:

Can Coloring be solved in O∗((2− ε)n) time (when k is fixed)?

Implications for Edge Coloring:

• Since vertex coloring can be solved in O∗(2n) time, the reduction implies that

edge coloring can be solved in O∗(2m) time (but requires exponential space).

• For bounded-degree graphs, a refined subset convolution technique yields an

O∗(2(1−ε)m)-time algorithm, where ε = 1/2Θ(∆).
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Motivation: Space

Bjorklund et al. [JCSS 2017] developed randomized polynomial-space solutions for

edge coloring:

• For general graphs, edge coloring can be solved in O∗(2m) time.

• For regular graphs, edge colroing can be solved in O∗(2m−n/2) time.

Our question:

Can edge coloring be solved faster than O∗(2m) time and polynomial space?

Our contribution:

Edge coloring can be solved in randomized O∗(2m−3n/5) time and polynomial space.
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Outline

Algorithm outline:

• Step 1. Polynomial construction:

Design a polynomial that can be efficiently evaluted.

• Step 2. Sieving:

We test whether a monomial satisfying certain properties exists.

Talk:

• We first review a simpler O∗(2m) time algorithm.

• We then discuss our improved algorithm, which refines both steps.
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O∗(2m)-time algorithm for edge coloring: Polynomial

Polynomial construction.

Define a variable xe for each edge e ∈ E ; let X = {xe}e∈E .
Define a polynomial P(X ) over a field F of characteristic 2:

P(X ) =
∑

M1,...,Mk

k∏
i=1

∏
e∈Mi

xe ,

where M1, . . . ,Mk are matchings with |M1|+ · · ·+ |Mk | = m.

Edge coloring can be reformulated as: Is there a collection of k matchings M1, . . . ,Mk

that covers the graph, i.e., M1 ∪ · · · ∪Mk = E?

This is equivalent to checking whether P(X ) contains the monomial
∏

e∈E xe .

Polynomial Evaluation.

Given a = {ae ∈ F | e ∈ E}, we can evaluate P(a) in polynomial time

since P(X ) can be expressed as a product of the Pfaffians of the Tutte matrix.
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O∗(2m)-time algorithm for edge coloring: Sieving

A monomial xd11 xd22 · · · xdnn is multilinear if each individual degree is at most 1

(i.e., di ≤ 1 for all i).

Multilinear sieving. [Björklund et al., JCSS 2017]

For a polynomial P(X ) over a field of char. 2, we can determine whether P(X ) contains

a multilinear monomial of degree ℓ using randomized O∗(2ℓ) evaluations of P(X ).

Our goal is to determine whether P(X ) contains the monomial
∏

e∈E xe , where

P(X ) =
∑

M1,...,Mk

k∏
i=1

∏
e∈Mi

xe .

We test whether P(X ) contains a multilinear term of degree m.

Theorem: Edge coloring can be solved in randomized O∗(2m) time and poly. space.
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Our algorithm: Polynomial

We refine the formulation of P(X ) while ensuring efficient evaluation.

We define

P(X ) =
∑

M1,...,Mk

k∏
i=1

∏
e∈Mi

xe ,

where M1, . . . ,Mk are matchings satisfying the following additional condition:

for each vertex v , every xe corresponding to an edge e incident to v appears exactly

deg(v) times across the Mi -matchings.

Given a = {ae ∈ F | e ∈ E}, we can evaluate P(a) in polynomial time using

a generalization of the Cauchy-Binet formula to skew-symmetric matrices (known as

the Ishikawa-Wakayama formula).
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Our algorithm: Partition Sieving

Let X be a set of variables, and let P(X ) be a polynomial.

Let X = X1 ⊔ · · · ⊔ Xp be a partition of X .

Let d = (d1, . . . , dp) be a tuple of positive integers.

We say that P(X ) is compatible with (X ,d) if, for each i ∈ [p] and every monomial m

in P(X ), the degree of m restricted to Xi is exactly di .

Our result (partition sieving):

For a polynomial P(X ) over a field of char. 2 that is compatible with (X ,d), we can

determine whether P(X ) contains a multilinear monomial of degree ℓ using

randomized O∗(2ℓ−p) evaluations of P(X ).

This result is based on the determinantal sieving framework.

[Eiben, Koana, and Wahlström, SODA 24]
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Our algorithm: Putting Everything Together

Preprocessing: First, delete all degree-1 vertices so the minimum degree is ≥ 2.

Structural result: A graph with ≥ 8 vertices has a dominating set of size ≤ 2n/5

[McCuaig & Shepherd J. Graph Theorey 89].

Partitioning strategy: Let D be a dominating set of size ≥ 2n/5, and let C = V \D.

We partition the edges EX acorss C and D based on their incidence with vertices in C ,

defining a partition {∂EX
(v)}v∈C of EX with ≥ 3n/5 parts.

We apply partition sieiving to P(X ) with degree |∂EX
(v)| for each v ∈ C .

Compatibility is guaranteed by the polynomial design.

Final theorem: Edge coloring can be solved in randomized O∗(2m−3n/5) time.
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Concluding remarks

Additional Results.

• For a d-regular graph, a dominating set of size (Hd+1/(d + 1))n exists, where Hk

is the k-th harmonic number. This implies that edge coloring can be solved in

O∗(2m−Hd+1
d+1

n) time, which approaches O∗(2m−n) as d → ∞.

• Our result extends to the list version of edge coloring.

Open Questions.

• Other applications of partition sieving?

• Is there an algorithm for edge coloring running in O∗(1.9999m) time?

• Can edge coloring be solved in O∗(2m−n) time?

• Currently, only a 2Ω(n) time lower bound under ETH is known.

Can we establish a 2Ω(m) or 2Ω(n log n) time lower bound for dense graphs?

Thank you
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