Faster Edge Coloring by Partition Sieving

Shyan Akmal (INSAIT, Sofia University) Tomohiro Koana (Utrecht Univerity & Kyoto University) STACS 2025

Special thanks to Christian Komusiewicz (Friedrich Schiller University Jena) for travel support.

Chromatic Index $\chi'(G)$: the minimum number of colors needed to edge-color *G*.

Chromatic Index $\chi'(G)$: the minimum number of colors needed to edge-color *G*. **Vizing's Theorem:** For any simple graph *G* with maximum degree $\Delta(G)$,

 $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.$

Chromatic Index $\chi'(G)$: the minimum number of colors needed to edge-color *G*. **Vizing's Theorem:** For any simple graph *G* with maximum degree $\Delta(G)$,

 $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.$

NP-hardness: Determining the chromatic index is NP-hard even for $\Delta = 3$.

Edge Coloring: A fundamental special case of graph coloring (on line graphs).

Edge Coloring: A fundamental special case of graph coloring (on line graphs). **State of the art:** Coloring can be solved in $O^*(2^n)$ time via subset convolution. **Edge Coloring:** A fundamental special case of graph coloring (on line graphs). **State of the art:** Coloring can be solved in $O^*(2^n)$ time via subset convolution. **Central question:**

Can Coloring be solved in $O^*((2-\varepsilon)^n)$ time (when k is fixed)?

Edge Coloring: A fundamental special case of graph coloring (on line graphs). **State of the art:** Coloring can be solved in $O^*(2^n)$ time via subset convolution. **Central question:**

Can Coloring be solved in $O^*((2-\varepsilon)^n)$ time (when k is fixed)?

Implications for Edge Coloring:

• Since vertex coloring can be solved in $O^*(2^n)$ time, the reduction implies that edge coloring can be solved in $O^*(2^m)$ time (but requires exponential space).

Edge Coloring: A fundamental special case of graph coloring (on line graphs). **State of the art:** Coloring can be solved in $O^*(2^n)$ time via subset convolution. **Central question:**

Can Coloring be solved in $O^*((2-\varepsilon)^n)$ time (when k is fixed)?

Implications for Edge Coloring:

- Since vertex coloring can be solved in $O^*(2^n)$ time, the reduction implies that edge coloring can be solved in $O^*(2^m)$ time (but requires exponential space).
- For bounded-degree graphs, a refined subset convolution technique yields an $O^*(2^{(1-\varepsilon)m})$ -time algorithm, where $\varepsilon = 1/2^{\Theta(\Delta)}$.

Bjorklund et al. [JCSS 2017] developed randomized polynomial-space solutions for edge coloring:

- For general graphs, edge coloring can be solved in $O^*(2^m)$ time.
- For regular graphs, edge colroing can be solved in $O^*(2^{m-n/2})$ time.

Bjorklund et al. [JCSS 2017] developed randomized polynomial-space solutions for edge coloring:

- For general graphs, edge coloring can be solved in $O^*(2^m)$ time.
- For regular graphs, edge colroing can be solved in $O^*(2^{m-n/2})$ time.

Our question:

Can edge coloring be solved faster than $O^*(2^m)$ time and polynomial space?

Bjorklund et al. [JCSS 2017] developed randomized polynomial-space solutions for edge coloring:

- For general graphs, edge coloring can be solved in $O^*(2^m)$ time.
- For regular graphs, edge colroing can be solved in $O^*(2^{m-n/2})$ time.

Our question:

Can edge coloring be solved faster than $O^*(2^m)$ time and polynomial space?

Our contribution:

Edge coloring can be solved in randomized $O^*(2^{m-3n/5})$ time and polynomial space.

Algorithm outline:

• Step 1. Polynomial construction:

Design a polynomial that can be efficiently evaluted.

• Step 2. Sieving:

We test whether a monomial satisfying certain properties exists.

Algorithm outline:

• Step 1. Polynomial construction:

Design a polynomial that can be efficiently evaluted.

• Step 2. Sieving:

We test whether a monomial satisfying certain properties exists.

Talk:

- We first review a simpler $O^*(2^m)$ time algorithm.
- We then discuss our improved algorithm, which refines both steps.

$O^*(2^m)$ -time algorithm for edge coloring: Polynomial

Polynomial construction.

Define a variable x_e for each edge $e \in E$; let $X = \{x_e\}_{e \in E}$. Define a polynomial P(X) over a field \mathbb{F} of characteristic 2:

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e,$$

where M_1, \ldots, M_k are matchings with $|M_1| + \cdots + |M_k| = m$.

Polynomial construction.

Define a variable x_e for each edge $e \in E$; let $X = \{x_e\}_{e \in E}$. Define a polynomial P(X) over a field \mathbb{F} of characteristic 2:

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e,$$

where M_1, \ldots, M_k are matchings with $|M_1| + \cdots + |M_k| = m$.

Edge coloring can be reformulated as: Is there a collection of k matchings M_1, \ldots, M_k that covers the graph, i.e., $M_1 \cup \cdots \cup M_k = E$?

This is equivalent to checking whether P(X) contains the monomial $\prod_{e \in E} x_e$.

Polynomial construction.

Define a variable x_e for each edge $e \in E$; let $X = \{x_e\}_{e \in E}$. Define a polynomial P(X) over a field \mathbb{F} of characteristic 2:

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e,$$

where M_1, \ldots, M_k are matchings with $|M_1| + \cdots + |M_k| = m$.

Edge coloring can be reformulated as: Is there a collection of k matchings M_1, \ldots, M_k that covers the graph, i.e., $M_1 \cup \cdots \cup M_k = E$?

This is equivalent to checking whether P(X) contains the monomial $\prod_{e \in E} x_e$.

Polynomial Evaluation.

Given $\mathbf{a} = \{a_e \in \mathbb{F} \mid e \in E\}$, we can evaluate $P(\mathbf{a})$ in polynomial time since P(X) can be expressed as a product of the Pfaffians of the Tutte matrix. Tomohiro Koana

Multilinear sieving.[Björklund et al., JCSS 2017]For a polynomial P(X) over a field of char. 2, we can determine whether P(X) contains
a multilinear monomial of degree ℓ using randomized $O^*(2^\ell)$ evaluations of P(X).

Multilinear sieving. [Björklund et al., JCSS 2017] For a polynomial P(X) over a field of char. 2, we can determine whether P(X) contains a multilinear monomial of degree ℓ using randomized $O^*(2^{\ell})$ evaluations of P(X). Our goal is to determine whether P(X) contains the monomial $\prod_{e \in E} x_{e_e}$ where

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e.$$

We test whether P(X) contains a multilinear term of degree m.

Multilinear sieving. [Björklund et al., JCSS 2017] For a polynomial P(X) over a field of char. 2, we can determine whether P(X) contains a multilinear monomial of degree ℓ using randomized $O^*(2^{\ell})$ evaluations of P(X). Our goal is to determine whether P(X) contains the monomial $\prod_{e \in E} x_{e_e}$ where

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e.$$

We test whether P(X) contains a multilinear term of degree m.

Theorem: Edge coloring can be solved in randomized $O^*(2^m)$ time and poly. space.

We refine the formulation of P(X) while ensuring efficient evaluation. We define

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e,$$

We refine the formulation of P(X) while ensuring efficient evaluation. We define

$$P(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e,$$

where M_1, \ldots, M_k are matchings satisfying the following additional condition: for each vertex v, every x_e corresponding to an edge e incident to v appears exactly $\deg(v)$ times across the M_i -matchings. We refine the formulation of P(X) while ensuring efficient evaluation. We define

$$\mathcal{P}(X) = \sum_{M_1,\ldots,M_k} \prod_{i=1}^k \prod_{e \in M_i} x_e,$$

where M_1, \ldots, M_k are matchings satisfying the following additional condition: for each vertex v, every x_e corresponding to an edge e incident to v appears exactly deg(v) times across the M_i -matchings.

Given $\mathbf{a} = \{a_e \in \mathbb{F} \mid e \in E\}$, we can evaluate $P(\mathbf{a})$ in polynomial time using a generalization of the Cauchy-Binet formula to skew-symmetric matrices (known as the Ishikawa-Wakayama formula).

Our algorithm: Partition Sieving

Let X be a set of variables, and let P(X) be a polynomial. Let $\mathcal{X} = X_1 \sqcup \cdots \sqcup X_p$ be a partition of X. Let $\mathbf{d} = (d_1, \dots, d_p)$ be a tuple of positive integers. Let X be a set of variables, and let P(X) be a polynomial.

Let $\mathcal{X} = X_1 \sqcup \cdots \sqcup X_p$ be a partition of X.

Let $\mathbf{d} = (d_1, \ldots, d_p)$ be a tuple of positive integers.

We say that P(X) is *compatible with* $(\mathcal{X}, \mathbf{d})$ if, for each $i \in [p]$ and every monomial m in P(X), the degree of m restricted to X_i is exactly d_i .

Let X be a set of variables, and let P(X) be a polynomial.

Let $\mathcal{X} = X_1 \sqcup \cdots \sqcup X_p$ be a partition of X.

Let $\mathbf{d} = (d_1, \ldots, d_p)$ be a tuple of positive integers.

We say that P(X) is *compatible with* $(\mathcal{X}, \mathbf{d})$ if, for each $i \in [p]$ and every monomial m in P(X), the degree of m restricted to X_i is exactly d_i .

Our result (partition sieving):

For a polynomial P(X) over a field of char. 2 that is compatible with $(\mathcal{X}, \mathbf{d})$, we can determine whether P(X) contains a multilinear monomial of degree ℓ using randomized $O^*(2^{\ell-p})$ evaluations of P(X).

Let X be a set of variables, and let P(X) be a polynomial.

Let $\mathcal{X} = X_1 \sqcup \cdots \sqcup X_p$ be a partition of X.

Let $\mathbf{d} = (d_1, \ldots, d_p)$ be a tuple of positive integers.

We say that P(X) is *compatible with* $(\mathcal{X}, \mathbf{d})$ if, for each $i \in [p]$ and every monomial m in P(X), the degree of m restricted to X_i is exactly d_i .

Our result (partition sieving):

For a polynomial P(X) over a field of char. 2 that is compatible with $(\mathcal{X}, \mathbf{d})$, we can determine whether P(X) contains a multilinear monomial of degree ℓ using randomized $O^*(2^{\ell-p})$ evaluations of P(X).

This result is based on the determinantal sieving framework.

[Eiben, Koana, and Wahlström, SODA 24]

Structural result: A graph with ≥ 8 vertices has a dominating set of size $\leq 2n/5$ [McCuaig & Shepherd J. Graph Theorey 89].

Structural result: A graph with ≥ 8 vertices has a dominating set of size $\leq 2n/5$ [McCuaig & Shepherd J. Graph Theorey 89].

Partitioning strategy: Let *D* be a dominating set of size $\geq 2n/5$, and let $C = V \setminus D$. We partition the edges E_X accrss *C* and *D* based on their incidence with vertices in *C*, defining a partition $\{\partial_{E_X}(v)\}_{v \in C}$ of E_X with $\geq 3n/5$ parts.

Structural result: A graph with ≥ 8 vertices has a dominating set of size $\leq 2n/5$ [McCuaig & Shepherd J. Graph Theorey 89].

Partitioning strategy: Let *D* be a dominating set of size $\geq 2n/5$, and let $C = V \setminus D$. We partition the edges E_X accrss *C* and *D* based on their incidence with vertices in *C*, defining a partition $\{\partial_{E_X}(v)\}_{v \in C}$ of E_X with $\geq 3n/5$ parts.

We apply partition sieiving to P(X) with degree $|\partial_{E_X}(v)|$ for each $v \in C$. Compatibility is guaranteed by the polynomial design.

Structural result: A graph with ≥ 8 vertices has a dominating set of size $\leq 2n/5$ [McCuaig & Shepherd J. Graph Theorey 89].

Partitioning strategy: Let *D* be a dominating set of size $\geq 2n/5$, and let $C = V \setminus D$. We partition the edges E_X accrss *C* and *D* based on their incidence with vertices in *C*, defining a partition $\{\partial_{E_X}(v)\}_{v \in C}$ of E_X with $\geq 3n/5$ parts.

We apply partition sieiving to P(X) with degree $|\partial_{E_X}(v)|$ for each $v \in C$. Compatibility is guaranteed by the polynomial design.

Final theorem: Edge coloring can be solved in randomized $O^*(2^{m-3n/5})$ time.

Concluding remarks

Additional Results.

- For a *d*-regular graph, a dominating set of size $(H_{d+1}/(d+1))n$ exists, where H_k is the *k*-th harmonic number. This implies that edge coloring can be solved in $O^*(2^{m-\frac{H_{d+1}}{d+1}n})$ time, which approaches $O^*(2^{m-n})$ as $d \to \infty$.
- Our result extends to the list version of edge coloring.

Additional Results.

- For a *d*-regular graph, a dominating set of size $(H_{d+1}/(d+1))n$ exists, where H_k is the *k*-th harmonic number. This implies that edge coloring can be solved in $O^*(2^{m-\frac{H_{d+1}}{d+1}n})$ time, which approaches $O^*(2^{m-n})$ as $d \to \infty$.
- Our result extends to the list version of edge coloring.

Open Questions.

- Other applications of partition sieving?
- Is there an algorithm for edge coloring running in $O^*(1.9999^m)$ time?
- Can edge coloring be solved in $O^*(2^{m-n})$ time?
- Currently, only a 2^{Ω(n)} time lower bound under ETH is known.
 Can we establish a 2^{Ω(m)} or 2^{Ω(n log n)} time lower bound for dense graphs?

Additional Results.

- For a *d*-regular graph, a dominating set of size $(H_{d+1}/(d+1))n$ exists, where H_k is the *k*-th harmonic number. This implies that edge coloring can be solved in $O^*(2^{m-\frac{H_{d+1}}{d+1}n})$ time, which approaches $O^*(2^{m-n})$ as $d \to \infty$.
- Our result extends to the list version of edge coloring.

Open Questions.

- Other applications of partition sieving?
- Is there an algorithm for edge coloring running in $O^*(1.9999^m)$ time?
- Can edge coloring be solved in $O^*(2^{m-n})$ time?
- Currently, only a 2^{Ω(n)} time lower bound under ETH is known.
 Can we establish a 2^{Ω(m)} or 2^{Ω(n log n)} time lower bound for dense graphs?

Thank you