A Quasi-Polynomial Time Algorithm for Multi-Arrival on Tree-Like Multigraphs

Ebrahim Ghorbani, Jonah Leander Hoff, Matthias Mnich

STACS 2025

Arrival

- Arrival: which sink does the particle end up on?
- Each vertex: routes along outgoing arcs in fixed cyclic order

Arrival

- Arrival: which sink does the particle end up on?
- Each vertex: routes along outgoing arcs in fixed cyclic order

Routing Multiple Particles

- Any maximal routing sequence converges to the same final configuration
- Multi-Arrival: how many particles end up on each sink?

Routing Multiple Particles

- Any maximal routing sequence converges to the same final configuration
- Multi-Arrival: how many particles end up on each sink?

Result

- Multi-Arrival on tree-like multigraphs in time $\mathcal{O}^*(\log^{\kappa} m)$
- $\kappa \approx$ measure of balanced nested branchings
 - Path-Like: $\kappa = 1$
 - Tree-Like: $\kappa \leq \log n_b$, where n_b number of branching vertices

Prior Work

Туре	Complexity	Graph	Reference
Arrival	$2^{\mathcal{O}(\sqrt{n}\log n)}$	Any	1
Arrival	$\mathcal{O}^*(1)$	Tree-like	2
Multi-Arrival	$\mathcal{O}^*(1)$	Uniform path-like	3
Multi-Arrival	$\mathcal{O}^*(1)$	Path-like	This paper
Multi-Arrival	$\mathcal{O}^*(\log^{\kappa} m)$	Tree-like	This paper

▶ If Multi-Arrival $\mathcal{O}^*(1)$ on $G[V \setminus X]$ with |X| bounded

Then Arrival O^{*}(1) on G[V]
 [Gärtner, Haslebacher, and Hoang 2021]

¹[Gärtner, Haslebacher, and Hoang 2021] ²[Auger, Coucheney, and Duhaze 2022] ³[Auger, Coucheney, Duhazé, et al. 2023]

Table of Contents

Certificate: Routing Vectors

Decomposition: Directed Routing Vectors

Algorithm: Finding Directed Routing Vectors

Legal Routing Vectors

- ▶ Routing (vector) $r \in \mathbb{Z}^{V}$: how often each vertex is routed
- Legal routing: corresponds to some legal routing sequence
- Maximal legal routing: legal routing with all particles on sinks

Legal Routing Vectors

- ▶ Routing (vector) $r \in \mathbb{Z}^{V}$: how often each vertex is routed
- Legal routing: corresponds to some legal routing sequence
- Maximal legal routing: legal routing with all particles on sinks

- Compensated routing: each vertex has out-flow less or equal in-flow
- Lower-bound flow into sinks
- Switching flows [Dohrau et al. 2017]

- Compensated routing: each vertex has out-flow less or equal in-flow
- Lower-bound flow into sinks
- Switching flows [Dohrau et al. 2017]

- Compensated routing: each vertex has out-flow less or equal in-flow
- Lower-bound flow into sinks
- Switching flows [Dohrau et al. 2017]

- Compensated routing: each vertex has out-flow less or equal in-flow
- Lower-bound flow into sinks
- Switching flows [Dohrau et al. 2017]

Directed Routing Vectors

- Idea: maximize flow into fixed sink s
- s-directed routing: last particles sent were towards s

Directed Routing Vectors

- Idea: maximize flow into fixed sink s
- s-directed routing: last particles sent were towards s

Problem

Original problem:

 $\begin{array}{ll} \text{maximize} & \text{flow of } \hat{r} \text{ into sinks} \\ \text{subject to} & \hat{r} \in \mathbb{Z}^V \text{ is compensated.} \end{array}$

Directed problem for sink s:

 $\begin{array}{ll} \text{maximize} & \text{flow of } r_s \text{ into } s \\ \text{subject to} & r_s \in \mathbb{Z}^V \text{ is } s \text{-directed and compensated.} \end{array}$

- 1. Guess flow $v_0 \leftarrow v_1$
- 2. Iteratively construct r
 - Since s-directed: flow $v_{i-1} \leftarrow v_i$ gives $r(v_i)$
 - Since compensated: $r(v_i) \le \sigma_i + (v_{i-1} \to v_i) + (v_i \leftarrow v_{i+1})$
- 3. If missing flow $v_n \leftarrow v_{n+1}$ is zero: guess is achievable

4. Otherwise: guess is too large

1. Guess flow $v_0 \leftarrow v_1$

- 2. Iteratively construct r
 - Since s-directed: flow $v_{i-1} \leftarrow v_i$ gives $r(v_i)$
 - Since compensated: $r(v_i) \le \sigma_i + (v_{i-1} \rightarrow v_i) + (v_i \leftarrow v_{i+1})$
- 3. If missing flow $v_n \leftarrow v_{n+1}$ is zero: guess is achievable

4. Otherwise: guess is too large

- 1. Guess flow $v_0 \leftarrow v_1$
- 2. Iteratively construct r
 - Since *s*-directed: flow $v_{i-1} \leftarrow v_i$ gives $r(v_i)$
 - Since compensated: $r(v_i) \le \sigma_i + (v_{i-1} \rightarrow v_i) + (v_i \leftarrow v_{i+1})$
- 3. If missing flow $v_n \leftarrow v_{n+1}$ is zero: guess is achievable
- 4. Otherwise: guess is too large

1. Guess flow $v_0 \leftarrow v_1$

- 2. Iteratively construct r
 - Since s-directed: flow $v_{i-1} \leftarrow v_i$ gives $r(v_i)$
 - Since compensated: $r(v_i) \le \sigma_i + (v_{i-1} \rightarrow v_i) + (v_i \leftarrow v_{i+1})$
- 3. If missing flow $v_n \leftarrow v_{n+1}$ is zero: guess is achievable

4. Otherwise: guess is too large

1. Guess flow $v_0 \leftarrow v_1$

- 2. Iteratively construct r
 - Since s-directed: flow $v_{i-1} \leftarrow v_i$ gives $r(v_i)$
 - Since compensated: $r(v_i) \le \sigma_i + (v_{i-1} \rightarrow v_i) + (v_i \leftarrow v_{i+1})$
- 3. If missing flow $v_n \leftarrow v_{n+1}$ is zero: guess is achievable

4. Otherwise: guess is too large

Tree-Like Extension

- Can only infer $v \leftarrow u_1 + u_2 + \ldots$
- ► Each $v \leftarrow u_i$ upper-bound depends on $v \rightarrow u_i$
- Solve by recursion with fixed $v \leftarrow u_i$ inferred

Tree-Like Extension

- Can only infer $v \leftarrow u_1 + u_2 + \ldots$
- Each $v \leftarrow u_i$ upper-bound depends on $v \rightarrow u_i$
- Solve by recursion with fixed $v \leftarrow u_i$ inferred

Contracted-Height

•
$$\kappa = 1 + \max\{\operatorname{ch}(T_r) \mid r \in N^-(S)\}$$

Contracted height ch(T_r): minimal height obtained by contracting per vertex one edge to child

$$ch(T_{v}) = \begin{cases} 1 + ch(T_{u_{1}}) & ch(T_{u_{1}}) = ch(T_{u_{2}}) \\ ch(T_{u_{1}}) & ch(T_{u_{1}}) > ch(T_{u_{2}}) \end{cases}$$

Contracted-Height

Summary

- Decomposition of maximal legal routing into s-directed compensated routings
- Recursive search to find s-directed compensated routings
 - Linear approximation guides exponential search
 - Recursion is contracted on one sub-tree for each vertex
- Dynamic program to find s-directed compensated routings

Thank you for your attention!

Bibliography I

- Auger, David, Pierre Coucheney, and Loric Duhaze (2022). "Polynomial Time Algorithm for ARRIVAL on Tree-like Multigraphs". In: arXiv e-prints, arXiv-2204.
- Auger, David, Pierre Coucheney, Loric Duhazé, et al. (2023).
 "Generalized ARRIVAL Problem for Rotor Walks in Path Multigraphs". In: *Reachability Problems*. Ed. by Olivier Bournez, Enrico Formenti, and Igor Potapov.
 Vol. 14235. Cham: Springer Nature Switzerland, pp. 183–198.
 ISBN: 978-3-031-45285-7 978-3-031-45286-4. DOI: 10.1007/978-3-031-45286-4_14. (Visited on 07/07/2024).
- Dohrau, Jérôme et al. (2017). "ARRIVAL: A Zero-Player Graph Game in NP ∩ coNP". In: A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek. Ed. by Martin Loebl, Jaroslav Nešetřil, and Robin Thomas. Cham: Springer International Publishing, pp. 367–374. ISBN: 978-3-319-44479-6. DOI: 10.1007/978-3-319-44479-6_14. (Visited on 05/03/2022).

Bibliography II

Gärtner, Bernd, Sebastian Haslebacher, and Hung P. Hoang (2021). "A Subexponential Algorithm for ARRIVAL". In: 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Vol. 198. Schloss Dagstuhl-Leibnitz-Zentrum für Informatik, p. 69.