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Arrival

▶ Arrival: which sink does the particle end up on?

▶ Each vertex: routes along outgoing arcs in fixed cyclic order
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Routing Multiple Particles

▶ Any maximal routing sequence converges to the same final
configuration

▶ Multi-Arrival: how many particles end up on each sink?
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Result

▶ Multi-Arrival on tree-like multigraphs in time O∗(logκm)
▶ κ ≈ measure of balanced nested branchings

▶ Path-Like: κ = 1
▶ Tree-Like: κ ≤ log nb, where nb number of branching vertices



Prior Work

Type Complexity Graph Reference

Arrival 2O(
√
n log n) Any 1

Arrival O∗(1) Tree-like 2

Multi-Arrival O∗(1) Uniform path-like 3

Multi-Arrival O∗(1) Path-like This paper
Multi-Arrival O∗(logκm) Tree-like This paper

▶ If Multi-Arrival O∗(1) on G [V \ X ] with |X | bounded
▶ Then Arrival O∗(1) on G [V ]

[Gärtner, Haslebacher, and Hoang 2021]

1[Gärtner, Haslebacher, and Hoang 2021]
2[Auger, Coucheney, and Duhaze 2022]
3[Auger, Coucheney, Duhazé, et al. 2023]
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▶ Legal routing: corresponds to some legal routing sequence

▶ Maximal legal routing: legal routing with all particles on sinks
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▶ Compensated routing: each vertex has out-flow less or equal
in-flow

▶ Lower-bound flow into sinks

▶ Switching flows [Dohrau et al. 2017]
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Problem

Original problem:

maximize flow of r̂ into sinks

subject to r̂ ∈ ZV is compensated.

Directed problem for sink s:

maximize flow of rs into s

subject to rs ∈ ZV is s-directed and compensated.



Path-Like Case

1. Guess flow v0 ← v1

2. Iteratively construct r
▶ Since s-directed: flow vi−1 ← vi gives r(vi )
▶ Since compensated: r(vi ) ≤ σi + (vi−1 → vi ) + (vi ← vi+1)

3. If missing flow vn ← vn+1 is zero: guess is achievable

4. Otherwise: guess is too large
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Tree-Like Extension

▶ Can only infer v ← u1 + u2 + . . .

▶ Each v ← ui upper-bound depends on v → ui
▶ Solve by recursion with fixed v ← uj inferred
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Contracted-Height

▶ κ = 1 +max{ch(Tr ) | r ∈ N−(S)}

▶ Contracted height ch(Tr ): minimal height obtained by
contracting per vertex one edge to child

ch(Tv ) =

{
1 + ch(Tu1) ch(Tu1) = ch(Tu2)

ch(Tu1) ch(Tu1) > ch(Tu2)
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Summary

▶ Decomposition of maximal legal routing into s-directed
compensated routings

▶ Recursive search to find s-directed compensated routings
▶ Linear approximation guides exponential search
▶ Recursion is contracted on one sub-tree for each vertex

▶ Dynamic program to find s-directed compensated routings



Thank you for your attention!



Bibliography I

Auger, David, Pierre Coucheney, and Loric Duhaze (2022).
“Polynomial Time Algorithm for ARRIVAL on Tree-like
Multigraphs”. In: arXiv e-prints, arXiv–2204.
Auger, David, Pierre Coucheney, Loric Duhazé, et al. (2023).
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