
A Quasi-Polynomial Time Algorithm for
Multi-Arrival on Tree-Like Multigraphs

Ebrahim Ghorbani, Jonah Leander Hoff, Matthias Mnich

STACS 2025

Arrival

▶ Arrival: which sink does the particle end up on?

▶ Each vertex: routes along outgoing arcs in fixed cyclic order

Arrival

▶ Arrival: which sink does the particle end up on?

▶ Each vertex: routes along outgoing arcs in fixed cyclic order

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Single Particle

Routing Multiple Particles

▶ Any maximal routing sequence converges to the same final
configuration

▶ Multi-Arrival: how many particles end up on each sink?

Routing Multiple Particles

▶ Any maximal routing sequence converges to the same final
configuration

▶ Multi-Arrival: how many particles end up on each sink?

Result

▶ Multi-Arrival on tree-like multigraphs in time O∗(logκm)
▶ κ ≈ measure of balanced nested branchings

▶ Path-Like: κ = 1
▶ Tree-Like: κ ≤ log nb, where nb number of branching vertices

Prior Work

Type Complexity Graph Reference

Arrival 2O(
√
n log n) Any 1

Arrival O∗(1) Tree-like 2

Multi-Arrival O∗(1) Uniform path-like 3

Multi-Arrival O∗(1) Path-like This paper
Multi-Arrival O∗(logκm) Tree-like This paper

▶ If Multi-Arrival O∗(1) on G [V \ X] with |X | bounded
▶ Then Arrival O∗(1) on G [V]

[Gärtner, Haslebacher, and Hoang 2021]

1[Gärtner, Haslebacher, and Hoang 2021]
2[Auger, Coucheney, and Duhaze 2022]
3[Auger, Coucheney, Duhazé, et al. 2023]

Table of Contents

Certificate: Routing Vectors

Decomposition: Directed Routing Vectors

Algorithm: Finding Directed Routing Vectors

Legal Routing Vectors

▶ Routing (vector) r ∈ ZV : how often each vertex is routed

▶ Legal routing: corresponds to some legal routing sequence

▶ Maximal legal routing: legal routing with all particles on sinks

Legal Routing Vectors

▶ Routing (vector) r ∈ ZV : how often each vertex is routed

▶ Legal routing: corresponds to some legal routing sequence

▶ Maximal legal routing: legal routing with all particles on sinks

Compensated Routing Vectors

▶ Compensated routing: each vertex has out-flow less or equal
in-flow

▶ Lower-bound flow into sinks

▶ Switching flows [Dohrau et al. 2017]

Compensated Routing Vectors

▶ Compensated routing: each vertex has out-flow less or equal
in-flow

▶ Lower-bound flow into sinks

▶ Switching flows [Dohrau et al. 2017]

Compensated Routing Vectors

▶ Compensated routing: each vertex has out-flow less or equal
in-flow

▶ Lower-bound flow into sinks

▶ Switching flows [Dohrau et al. 2017]

Compensated Routing Vectors

▶ Compensated routing: each vertex has out-flow less or equal
in-flow

▶ Lower-bound flow into sinks

▶ Switching flows [Dohrau et al. 2017]

Directed Routing Vectors

▶ Idea: maximize flow into fixed sink s

▶ s-directed routing: last particles sent were towards s

Directed Routing Vectors

▶ Idea: maximize flow into fixed sink s

▶ s-directed routing: last particles sent were towards s

Problem

Original problem:

maximize flow of r̂ into sinks

subject to r̂ ∈ ZV is compensated.

Directed problem for sink s:

maximize flow of rs into s

subject to rs ∈ ZV is s-directed and compensated.

Path-Like Case

1. Guess flow v0 ← v1

2. Iteratively construct r
▶ Since s-directed: flow vi−1 ← vi gives r(vi)
▶ Since compensated: r(vi) ≤ σi + (vi−1 → vi) + (vi ← vi+1)

3. If missing flow vn ← vn+1 is zero: guess is achievable

4. Otherwise: guess is too large

Path-Like Case

1. Guess flow v0 ← v1

2. Iteratively construct r
▶ Since s-directed: flow vi−1 ← vi gives r(vi)
▶ Since compensated: r(vi) ≤ σi + (vi−1 → vi) + (vi ← vi+1)

3. If missing flow vn ← vn+1 is zero: guess is achievable

4. Otherwise: guess is too large

Path-Like Case

1. Guess flow v0 ← v1

2. Iteratively construct r
▶ Since s-directed: flow vi−1 ← vi gives r(vi)
▶ Since compensated: r(vi) ≤ σi + (vi−1 → vi) + (vi ← vi+1)

3. If missing flow vn ← vn+1 is zero: guess is achievable

4. Otherwise: guess is too large

Path-Like Case

1. Guess flow v0 ← v1

2. Iteratively construct r
▶ Since s-directed: flow vi−1 ← vi gives r(vi)
▶ Since compensated: r(vi) ≤ σi + (vi−1 → vi) + (vi ← vi+1)

3. If missing flow vn ← vn+1 is zero: guess is achievable

4. Otherwise: guess is too large

Path-Like Case

1. Guess flow v0 ← v1

2. Iteratively construct r
▶ Since s-directed: flow vi−1 ← vi gives r(vi)
▶ Since compensated: r(vi) ≤ σi + (vi−1 → vi) + (vi ← vi+1)

3. If missing flow vn ← vn+1 is zero: guess is achievable

4. Otherwise: guess is too large

Tree-Like Extension

▶ Can only infer v ← u1 + u2 + . . .

▶ Each v ← ui upper-bound depends on v → ui
▶ Solve by recursion with fixed v ← uj inferred

Tree-Like Extension

▶ Can only infer v ← u1 + u2 + . . .

▶ Each v ← ui upper-bound depends on v → ui
▶ Solve by recursion with fixed v ← uj inferred

Contracted-Height

▶ κ = 1 +max{ch(Tr) | r ∈ N−(S)}

▶ Contracted height ch(Tr): minimal height obtained by
contracting per vertex one edge to child

ch(Tv) =

{
1 + ch(Tu1) ch(Tu1) = ch(Tu2)

ch(Tu1) ch(Tu1) > ch(Tu2)

Contracted-Height

ch(Tv) =

{
1 + ch(Tu1) ch(Tu1) = ch(Tu2)

ch(Tu1) ch(Tu1) > ch(Tu2)

Summary

▶ Decomposition of maximal legal routing into s-directed
compensated routings

▶ Recursive search to find s-directed compensated routings
▶ Linear approximation guides exponential search
▶ Recursion is contracted on one sub-tree for each vertex

▶ Dynamic program to find s-directed compensated routings

Thank you for your attention!

Bibliography I

Auger, David, Pierre Coucheney, and Loric Duhaze (2022).
“Polynomial Time Algorithm for ARRIVAL on Tree-like
Multigraphs”. In: arXiv e-prints, arXiv–2204.
Auger, David, Pierre Coucheney, Loric Duhazé, et al. (2023).
“Generalized ARRIVAL Problem for Rotor Walks in Path
Multigraphs”. In: Reachability Problems. Ed. by
Olivier Bournez, Enrico Formenti, and Igor Potapov.
Vol. 14235. Cham: Springer Nature Switzerland, pp. 183–198.
isbn: 978-3-031-45285-7 978-3-031-45286-4. doi:
10.1007/978-3-031-45286-4_14. (Visited on 07/07/2024).
Dohrau, Jérôme et al. (2017). “ARRIVAL: A Zero-Player Graph
Game in NP ∩ coNP”. In: A Journey Through Discrete
Mathematics: A Tribute to Jǐŕı Matoušek. Ed. by Martin Loebl,
Jaroslav Nešeťril, and Robin Thomas. Cham: Springer
International Publishing, pp. 367–374. isbn:
978-3-319-44479-6. doi: 10.1007/978-3-319-44479-6_14.
(Visited on 05/03/2022).

https://doi.org/10.1007/978-3-031-45286-4_14
https://doi.org/10.1007/978-3-319-44479-6_14

Bibliography II

Gärtner, Bernd, Sebastian Haslebacher, and Hung P. Hoang
(2021). “A Subexponential Algorithm for ARRIVAL”. In: 48th
International Colloquium on Automata, Languages, and
Programming (ICALP 2021). Vol. 198. Schloss
Dagstuhl-Leibnitz-Zentrum für Informatik, p. 69.

	Certificate: Routing Vectors
	Decomposition: Directed Routing Vectors
	Algorithm: Finding Directed Routing Vectors
	References

