# Generalized Inner Product Estimation with Limited Quantum Communication

Srinivasan Arunachalam

Louis Schatzki

## 



Looking for Margaretha Reichhardt

## **Problem Setup**

k copies of quantum state  $\psi \in \mathbb{C}^d$ 



What can they learn about the relationship between their states with limited communication?

#### **Motivation: Cross Platform Verification**



Images: Forbes & AFRL

#### **Distributed Protocol**



#### **Distributed Protocol**



#### **Task: (Generalized) Inner Product Estimation**



**Goal:** estimate  $|\psi^{\dagger}M\phi|^2$  for Hermitian *M* Minimize sample complexity **k** 

## **Motivation**

- $M = \mathbb{I}$ :
  - Similarity between pure states
  - Hilbert Schmidt distance  $\|\rho \sigma\|_2$
- *M* a projector:
  - Overlap in a subspace
- More general metrics on  $\mathbb{C}^d$

**Central question:** how does the allowed communication change the sample complexity of the task?



## **Constrained Measurements**

Classical communication:

• ALL'23: 
$$\Theta\left(max\left\{\frac{\sqrt{d}}{\varepsilon}, \frac{1}{\varepsilon^2}\right\}\right)$$
 to estimate  $|\psi^{\dagger}\phi|$ 

• **AS'25:** 
$$\mathcal{O}\left(max\left\{\frac{\|M_{\varepsilon}\|_{2}}{\varepsilon}, \frac{1}{\varepsilon^{2}}\right\}\right), \Omega\left(max\left\{\frac{\|M_{\varepsilon}\|_{2}}{\sqrt{\varepsilon}}, \frac{1}{\varepsilon^{2}}\right\}\right)$$
 to estimate  $|\psi^{\dagger}M\phi|^{2}$ 

copies

Limited quantum communication (can send q-dimensional states):

• AS'25: 
$$\Omega\left(\sqrt{\frac{d}{q}}\right)$$

• **AS'25:** protocol using  $\Theta(1)$  *q*-dimensional messages and  $O\left(\sqrt{\frac{d}{q}}\right)$ 

## **Generalized Inner Product With Classical Communication**



# **Goal:** estimate $|\psi^{\dagger}M\phi|^2$ with just classical communication



## **No Constraints**

- Allowed unlimited classical and quantum communication
- $\Theta\left(\frac{1}{\varepsilon^2}\right)$  samples to estimate  $|\psi^{\dagger}M\phi|^2$  to accuracy  $\varepsilon$



#### **Generalized Inner Product**

- **Goal**: estimate  $f = |\psi^{\dagger} M \phi|^2$  to error  $\varepsilon$
- Idea: controlled by largest eigenvalues
- Define  $M_{\varepsilon}$  as M with all eigenvalues of norm less than  $\varepsilon/2$  replaced with 0

• Estimate 
$$f_{\varepsilon} = \left|\psi^{\dagger}M_{\varepsilon}\phi\right|^{2}$$



#### **Protocol with Classical Communication**



## **Analysis of Protocol**

- Bias is  $\leq \frac{\varepsilon}{2} + \mathcal{O}\left(\frac{1}{k}\right)$
- $\operatorname{Var}(w) = \mathcal{O}\left(\frac{1}{k} + \frac{\|M_{\varepsilon}\|_{2}^{2}}{k^{2}} + \frac{\|M_{\varepsilon}\|_{2}^{4}}{k^{4}}\right)$
- $k = \Omega\left(\max\left\{\frac{1}{\varepsilon^2}, \frac{\|M_{\varepsilon}\|_2}{\varepsilon}\right\}\right)$  suffices

## **Lower Bound**

- $M_{\varepsilon}$  is "similar" to I on its support
- Reduce estimating inner product
  - to estimating  $\left|\psi^{\dagger}M_{\varepsilon}\phi\right|^{2}$

## **Inner Product Estimation with Entanglement**





#### What if Alice and Bob have quantum communication?



#### **Limited Entanglement**



## Limited Entanglement (AS'24)

• Allowed a *q* dimensional quantum

message,  $k = \Omega\left(\sqrt{\frac{d}{q}}\right)$ 

- Must communicate Ω(n) qubits for poly(n) sample complexity
- With  $\Theta(1)$  quantum messages of

dimension q, 
$$k = O\left(\sqrt{\frac{d}{q}}\right)$$
 suffices



#### **Sketch of Protocol**



• Divide Hilbert space into many random "buckets"

 $ilde{\psi}$ 

 $\left| ilde{\psi}^{\dagger} ilde{\phi}
ight|^{2}$ 

SWAP

Test

Ũ

- Each perform projections into these buckets and keep track of collisions
- Teleport and swap test on collisions

#### **Sketch of Protocol**



Random projection maintains overlaps with high probability

## **Conclusion and Open Problems**



## Summary

#### **Classical Communication**

#### • Estimate $|\psi^{\dagger}M\phi|^2$

#### **Limited Quantum Communication**

- Estimate  $|\psi^{\dagger}\phi|^2$
- Sample complexity controlled by  $||M_{\varepsilon}||_2$  Entanglement helps, but not much



## **Open Problems**

- Estimate trace distance of mixed states?
  - Without locality constraints,  $k = \Theta(d)^1$
  - Question: does k = O(d) suffice with LOCC?
- Relationship to oblivious quantum state compression
  - Can we compress  $\rho^{\otimes k}$  better than  $\rho$

# **Questions?**

