HOW TO PLAY THE ACCORDION

Uniformity and the (Non-)Conservativity of the Linear Approximation of the λ -Calculus

Rémy Cerda, CNRS, IRIF (currently) and Aix-Marseille Université, I2M jww. **Lionel Vaux Auclair**, Aix-Marseille Université, I2M

STACS, Jena, 5 March 2025

1/13

program := instruction (program, ..., program)

result = program that cannot be further executed (normal form)

But the result might be *infinite* and *infinitely far*:

What we can compute in finite time are *partial results*:

What we can compute in finite time are *partial results*:

As a summary:

[Wadsworth, Hyland, Barendregt, 1970s]

and the result is the *limit* of all partial results: it's a *continuous* approximation.

Linear programs: each argument of a function is used *exactly once*.

Linear programs: each argument of a function is used exactly once.

Linear programs: each argument of a function is used exactly once.

6/13

Programs are λ-terms:

Linear programs are **resource** *λ***-terms**:

 $s, t, \dots := x \mid \lambda x.s \mid s[t_1, \dots, t_n]$

Given a λ -term *M*, we denote by $\mathcal{T}(M)$ the set of resource λ -terms approximating it. (Its *Taylor expansion*!)

Need a nap? Have it during this slide!

Program execution is the β -reduction on λ -terms:

Need a nap? Have it during this slide!

Linear execution is the **resource reduction** on resource λ -terms:

Need a nap? Have it during this slide!

Linear execution is the **resource reduction** on resource λ -terms:

WHAT'S IN THE PAPER

Wake up!

Fact 1 (simulation, finite) Let M, N be finite λ -terms. If $M \longrightarrow_{\beta}^{*} N$ then $\mathcal{T}(M) \longrightarrow_{r} \mathcal{T}(N)$.

Problem 1 (conservativity, finite)

Is the converse true?

Theorem 1

Yes it is! If $\mathcal{T}(M) \longrightarrow_{\mathrm{r}} \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{*} N$.

[V.A. 2017]

WHAT'S IN THE PAPER

Fact 2 (simulation, infinitary) Let M, N be infinitary λ -terms. If $M \longrightarrow_{\beta}^{\infty} N$ then $\mathcal{T}(M) \longrightarrow_{r} \mathcal{T}(N)$.

Problem 2 (conservativity, infinitary)

Is the converse true?

Theorem 2

No, it isn't! There are terms A, \overline{A} such that $\mathcal{T}(A) \longrightarrow_{r} \mathcal{T}(\overline{A})$ but there is no reduction $A \longrightarrow_{\beta}^{\infty} \overline{A}$.

A is the *Accordion* λ -term.

[C. and V.A. 2023]

 $\mathbb{A} \longrightarrow^*_{\beta} P(0)$

11/13

Problem 3 (restoring conservativity)

Can we restrict \twoheadrightarrow_r to obtain a conservative approximation?

Theorem 3

Yes, thanks to the *uniform* lifting of the resource reduction $\longrightarrow_{r}^{\infty}$! If $\mathcal{T}(M) \xrightarrow{\infty}_{r} \mathcal{T}(N)$ then $M \longrightarrow_{\beta}^{\infty} N$.

In particular, there is no reduction $\mathcal{T}(A) \xrightarrow{\infty}_{r}^{\infty} \mathcal{T}(\overline{A})$.

Thanks for your attention! Any questions?

btw, please offer me a postdoc position