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Let’s use a non-euclidean geometry for our random graphs. Hyperbolic Disk Dg

Hyperbolic geometry: HRG G ~ G(n, a, C).

€ (1/2,1) S ;i //f/’.

Disk with radius R = 2log(n) + C

Probability that vertex « has degree k is ~ k~(2a+1)

Connect vertex pair u, v, iff dy(u,v) < R.

Number of nodes

Degree
/ | ] .\ \ \ \' \ \\\.
/" |f? i" \ 5 \\\'\

e ‘ \ ’
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Let’s use a non-euclidean geometry for our random graphs. Hyperbolic Disk Dg

Hyperbolic geometry: HRG G ~ G(n, a, C).

N . € (1/2,1)
Disk with radius R = 2log(n) + C

X

4

N
vy

Probability that vertex « has degree k is ~ k~(2a+1)

i

Connect vertex pair u, v, iff dp(u, v) < R.

\\

W\

L e
|
\*“\‘

® Diameter is ©(log(n)) with high probability.

(Kiwi, Mitsche ANALCO’15; Friedrich, Krohmer ICALP’'15;
Muller,Staps Advances in Applied Probability’19)

i .

Number of nodes
J

&7/
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Hyperbolic Disk Dg

W 4 372
\ \\\ ljl » i} ‘7’

Let’s use a non-euclidean geometry for our random graphs.

Hyperbolic geometry: HRG G ~ G(n, a, C).
€ (1/2,1)

Disk with radius R = 2log(n) + C

4

¥

Probability that vertex « has degree k is ~ k~(2a+1)

N\
|
\*“\‘

|
}
[}

\\

Connect vertex pair u, v, iff dp(u, v) < R.

m |Diameter is ©(log(n)) with high probability.

Al

Number of nodes

(Kiwi, Mitsche ANALCO’15; Friedrich, Krohmer ICALP’'15; ~& Y
Mller,Staps Advances in Applied Probability’19) ey
B Giant component with extremely high probability. }:\

(Bode, Fountoulakis, Muller Electron. J. Comb.’15;

Fountoulakis, Muller Ann. Appl. Probab’18;
Blasius, Friedrich, Katzmann, R., Zeif ESA’23)
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B The treewidth is of size © (n' =) with high probability. tw < eI

(Blasius, Friedrich, Krohmer ESA’16)
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B The treewidth is of size © (n' =) with high probability. o ik tw < eI

(Blasius, Friedrich, Krohmer ESA’16) # )

i
B The shortest path between two vertices can be computed ino(n) with high probability.
(Blasius, Freiberger, Friedrich, Katzmann, y, Worst-case Q(n)
Montenegro-Retana, Thieffry ICALP'19) A
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B The treewidth is of size © (n' =) with high probability. o i tw € e No(y/n)
(Blasius, Friedrich, Krohmer ESA’'16) # )

i

B The shortest path between two vertices can be computed ino(n) with high probability.

(Blasius, Freiberger, Friedrich, Katzmann, y, Worst-case Q(n)
Montenegro-Retana, Thieffry ICALP'19) A

B The Cligue Number is © (n'~%) can be solved in polynomial time with high probability.

(Friedrich, Krohmer INFOCOM'15)

/
N
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B The treewidth is of size © (n' =) with high probability. o i tw € e No(y/n)
(Blasius, Friedrich, Krohmer ESA’16) # )

k

B The shortest path between two vertices can be computed ino(n) with high probability.
(Blasius, Freiberger, Friedrich, Katzmann, y, Worst-case Q(n)
Montenegro-Retana, Thieffry ICALP'19) A

B The Cligue Number is © (n'~%) can be solved in polynomial time with high probability.

(Friedrich, Krohmer INFOCOM'15)

B The Vertex Cover problem can be approximated in O(nlog(n))) with factor (1 + o(1)) w.h.p.

(Blasius, Friedrich, Katzmann ESA’'21) <|§ :
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The Colouring Problem can be approximated

In O(n) with ratio (4/3)* w.e.h.p.

(Baguley, Maus, R., Skretas STACS’25)
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The Colouring Problem can be approximated
In O(n) with ratio (4/3)* w.e.h.p.

(Baguley, Maus, R., Skretas STACS’25)
w(G) < x(G) <k(G)+1

clique chromatic degeneracy
b
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The Colouring Problem can be approximated
In O(n) with ratio (4/3)* w.e.h.p.

(Baguley, Maus, R., Skretas STACS’25)
w(@ < x(G) <k(G) +1

clique chromatic degenerac y

B There is a non-trivial gap between
Degeneracy and Cligue Number.
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The Colouring Problem can be approximated
In O(n) with ratio (4/3)* w.e.h.p.

w(@) < x(G) <k(G)+1

clique chromatic degeneracy

B There is a non-trivial gap between
Degeneracy and Cliqgue Number.
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The Colouring Problem can be approximated
In O(n) with ratio (4/3)* w.e.h.p.

(Baguley, Maus, R., Skretas STACS’25)
w(G) < x(G) <k(G)+1

clique chromatic degeneracy
number number

B There is a non-trivial gap between

Bk - (1/2,1) Degeneracy and Cliqgue Number.

— (4/3)"

o - (2/V5,4/3)
7 :” - B The gap is at most (4/3)* giving a

- linear-time greedy algorithm to J
i " approximate colouring with this gap.
¥ GREEDIS GOOD!
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The Colouring Problem can be approximated
In O(n) with ratio (4/3)* w.e.h.p.

(Baguley, Maus, R., Skretas STACS’25)
w(G) < x(G) <k(G)+1

clique chromatic degeneracy What is the
R be syRre Chromatic Number
om ac(1/2,1) B There is a non-trivial gap between of a Hyperbolic
R (13 Degeneracy and Cligue Number. Random Graph?

o - 2/V3.4/3)
7 ;’“ - B The gap is at most (4/3)* giving a

o \ linear-time greedy algorithm to 4
» v - approximate colouring with this gap.
F ' GREEDIS GOOD
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