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Theory Practice

NP-hard problems
are hard.

Heuristics give
efficient solutions.

Theory-practice-gap

Worst-case analysis Real-world instances

run-time on realistic
distributions

What are realistic distributions?
What are their (algorithmic) properties?

networks
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Simplest model: Erdős–Rényi Graphs G ∼ G(n, p).
Number of vertices |V | = n.Number of vertices |V | = n.

Toy example: n = 6

Number of vertices |V | = n.Probability of edge p ∈ [0, 1].

Toy example: n = 6



Complex Networks | Hyperbolic Random Graphs | Janosch Ruff 3
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Simplest model: Erdős–Rényi Graphs G ∼ G(n, p).
Number of vertices |V | = n.Number of vertices |V | = n.

Toy example: n = 6

Number of vertices |V | = n.Probability of edge p ∈ [0, 1].

Toy example: n = 6



Complex Networks | Hyperbolic Random Graphs | Janosch Ruff 3
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Erdős–Rényi Graphs

Since networks are everywhere, let’s consider distributions for graphs.
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Erdős–Rényi Graphs

Since networks are everywhere, let’s consider distributions for graphs.
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n , G has a

giant component Θ(n), with high probability.

Abbreviation w.h.p.: Probability converges to 1.

Probability that the world
continues to exist

tomorrow is smaller..
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Gilbert

geometric



Complex Networks | Hyperbolic Random Graphs | Janosch Ruff 5

Network Science

locality
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Diameter is Θ(log(n)) with high probability.
(Kiwi, Mitsche ANALCO’15; Friedrich, Krohmer ICALP’15;
Müller,Staps Advances in Applied Probability’19)

Giant component with extremely high probability.

(Bode, Fountoulakis, Müller Electron. J. Comb.’15;
Fountoulakis, Müller Ann. Appl. Probab’18;
Bläsius, Friedrich, Katzmann, R., Zeif ESA’23)
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