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This talk is about the correspondence:

“There is a good way of showing that states in a generalized transition system are
behaviourally equivalent.”

|

“There is an identity-preserving lax extension of ...”

Today, we will provide necessary and sufficient conditions for the existence of
identity-preserving lax extensions.



WHAT IS BEHAVIOURAL EQUIVALENCE?



NON-DETERMINISTIC TRANSITION SYSTEMS

For non-deterministic transition systems:

Definition (Park 1981; Milner 1989)
Two states in (possibly distinct) systems are bisimilar if there is a relation between
the underlying sets of the systems that relates them and preserves and reflects

transitions.
“Bisimilarity is behavioural equivalence!”
Questions:

« Is there a high-level reason why this definition works?

« Can we transport the definition to other systems?



NON-DETERMINISTIC TRANSITION SYSTEMS

For non-deterministic transition systems:

Definition (Park 1981; Milner 1989)

Two states in (possibly distinct) systems are bisimilar if there is a relation between
the underlying sets of the systems that relates them and preserves and reflects
transitions.

“Bisimilarity is behavioural equivalence!”
Questions:

« Is there a high-level reason why this definition works?
« Can we transport the definition to other systems?

Answer: YES! (But to understand this we need a bit of category theory.)



UNIVERSAL COALGEBRA

Rutten 2000
Key ingredients: coalgebra, coalgebra homomorphism and bisimulation.

Let F: Set — Set be a functor. An F-coalgebra (X, «) consists of a set X and a map
a: X — FX. Amorphism f: (X,a) — (Y, 3) of F-coalgebras isa map f: X — Y such
that 8- f = Ff - a.

Intuition:

« X is a set of states;

« a: X — FX is a transition map «.: X — FX assigning to each state x € X a
collection «(x) of successors, structured according to F;

« f: (X,a) = (Y, ) is a map that preserve the behaviour of states.



BISIMULATIONS COALGEBRAICALLY

Let F: Set — Set be a functor.

1. Extend F to a relator L, i.e. to a monotone map on relations s.t.
r: X-=Y — Lr: EX-FY.

2. Then, a relation r: XY is an L-bisimulation from an F-coalgebra (X, a) to an
L-coalgebra (Y,3) ifforallx e Xandy € Y,

xry = a(x)Lrs(y).

Remark
For all F-coalgebras (X, @) and (Y, 3) there is a largest L-bisimulation from (X, «) to
(Y, 8) which is called L-bisimilarity.



THE BARR RELATOR

Definition
Given a relation r: X+Y, take a span (m: A — X, m: A — Y) such that r = 7, - 7.
Then, put Fr = Fr, - (Fmy)°.

The Barr relator of F

- agrees with F on functions;
- preserves converses, i.e. F(r°) = (Fr)°, where r° is the converse relation of r.

- in general, it does not preserve composition laxly, i.e., Fr- Fs £ F(r - s).

Example

The Barr relator of the powerset functor P sends a relation r to the relation given
by: APrB < (VacA3becB.arb)A(vbeB3acAbra).



UNIVERSAL COALGEBRA

Example
The powerset functor P: Set — Set sends
- aset X to the set PX of subsets of X,
+ afunction f: X — Y to the function Pf: PX — PY that assings A C X to f[A].

« P-coalgebras are non-deterministic transition systems.
« P-coalgebra homomorphisms are transition preserving and reflecting maps.

- P-bisimulations are transition preserving and reflecting relations.

We can transport the definition of bisimilarity from non-deterministic transition
systems to other systems! But does it make sense to do so?



BEHAVIOURAL EQUIVALENCE

Definition
States x and y in coalgebras (X, «) and (Y, 3), respectively, are behaviourally

equivalent if there is a coalgebra (Z,~) and morphisms f: (X, a) — (Z,7),

g: (¥, 8) — (Z,7) such that f(x) = g(y).

Problem: It is hard to work with this definition.

Solution: Bisimulations as witnesses for coalgebraic behavioural equivalence!
Now we have an explanation:

Example

For the powerset functor, Barr-bisimilarity coincides with behavioural equivalence.



GooD NOTIONS OF BISIMULATION



GOOD NOTIONS OF BISIMULATION

We are interested in relators whose class of L-bisimulations

+ contains all coalgebra homomorphisms.

because coalgebra homomorphisms are behaviour-preserving maps.
« is closed under converses.

because behavioural equivalence is symmetric.

« is closed under composition.

+ because in many situations this is important to show that L-bisimilarity
coincides with behavioural equivalence (and some other nice properties).

We have shown that these properties essentially characterize lax extensions.



LAX EXTENSIONS

Definition

A (symmetric) lax extension L: Rel — Rel of a functor F: Set — Set is an F-relator
S.t.

1. Ff < Lf,
2. L(r°) = (Lr)°,

3. Ls-Lr<L(s-r),

forallr: X=Y,s: Y-=Zand f: X — Y. A lax extension is identity-preserving or
normal if L1y = 1gy, for every set X.

The Barr relator is a lax extension iff the functor preserves weak pullbacks!



IDENTITY-PRESERVING LAX EXTENSIONS

Let L: Rel — Rel be a lax extension of a functor F: Set — Set.

Theorem (MV15)
If L is identity-preserving, then L-bisimilarity coincides with behavioural
equivalence.

Conversely, we have shown:

Theorem
In practise, if L-bisimilarity coincides with behavioural equivalence, then L is
identity-preserving.



EXISTENCE OF IDENTITY-PRESERVING LAX EXTENSIONS



CHARACTERIZATION

Since the smallest lax extension of a functor is given by the laxification of its Barr

relator:
Corollary
A functor F: Set — Set admits a identity-preserving lax extension iff for every set X
and every composable sequence of relationsr,, ..., r,
fn-...-f1 =1 = Frp-...-Fry = 1g.

So, we have a characterization...but we are looking for something simpler!



PRESERVATION OF WEAK PULLBACKS

Definition
q

W —

Y
A commutative square p _ J{g is a weak pullback ifforallx e Xandy € Y

X —— 7

f
sit. f(x) = g(y) thereisw € W s.t. x = p(w) and y = q(w).
Example

For every function f: X — Z the following diagram - the inverse image of the
empty set w.rt f - is a weak pullback.



WEAK PULLBACKS

Definition

We say that a functor F: Set — Set preserves weak pullbacks, 1/4-iso (weak)
pullbacks, 1/4-mono (weak) pullbacks and 4/4-epi weak pullbacks if it sends weak
pullbacks of the following forms, respectively, to weak pullbacks

Ww——Y w—=-Y Wr—Y W ——>Y
A A A A AN A S
X —— Z X —— Z X —— Z X —» Z,

with arrows —, — and —» indicating injectivity, surjectivity and bijectivity,
correspondingly.



NEIGHBOURHOOD FUNCTORS

Example

+ The neighbourhood functor A/: Set — Set sends

+ aset X to the set PPX of neighbourhood systems of X,
« afunction f: X — Y to the function N'f: NX — NY that assigns to every element
AeNXtheset{BCY|f'Be A}.
« The monotone neighbourhood functor M is the subfunctor of A/ that sends a
set X to the set MX of monotone neighbourhood systems of X,
VAe A.(ACB = Be A).

- Coalgebras for the (monotone) neighbourhood functor are (monotone)
neighbourhood frames.



« The powerset functor P preserves weak pullbacks.

« The monotone neighbourhood functor M

- preserves 1/4-iso pullbacks and 4/4-epi weak pullbacks;
+ does not preserve 1/4-mono pullbacks.

« The neighbourhood functor A/
« preserves 4/4-epi weak pullbacks;
- does not preserve 1/4-iso pullbacks.
Proof: it does not preserve the inverse image of the empty set w.r.t the map
L:{a,b} — {x}.



« Every functor that preserves weak pullbacks admits an identity-preserving lax
extension.
Ex: The powerset functor P

« There are functors that do not preserve weak pullbacks that admit
identity-preserving lax extensions.
Ex: The monotone neighourhood functor M.

« There are functors that do not admit identity-preserving lax extensions.
The neighbourhood functor A/ [Marti and Venema 2015].



WHAT Is KNOWN

preserves 1/4-mono
(weak) pullbacks T

-7 . S T S o
preserves admits ~~_,| preserves
weak identity-preserving |« 1/4-is0
pullbacks . lax extensions = pullbacks
~ y -
\\A / -

preserves 1/4-iso -
and 4/4-epi weak pullbacks

Solid arrows are contributions, dashed arrows are trivial. All implications are
non-reversible.



EXAMPLE: M-WEIGHTED TRANSITION SYSTEMS

Example

Given a commutative monoid (M, +,0) (or just M), the monoid-valued functor M)
maps a set X to the set MX) of functions x: X — M with finite support, i.e. u(x) # 0
for only finitely many x.

M(-)-coalgebras correspond to M-weighted transition systems, and we have:
Corollary

A (commutative) monoid-valued functor admits an identity-preserving lax
extension iff the monoid is positive.

Since the additive monoid Z id not positive, there is no “good” notion of
bisimulation for Z-weighted transition systems!



OPEN QUESTIONS

« Useful characterization of the functors that admit an identity-preserving lax
extension.

« We need new strategies to go beyond our sufficient conditions.
+ Not clear how to unify both cases.

« Useful characterization of the functors that admit a greatest
identity-preserving lax extension.

+ Maximally permissive notion of bisimulation.
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