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Plan

This talk is about the correspondence:

“There is a good way of showing that states in a generalized transition system are
behaviourally equivalent.”

≃

“There is an identity-preserving lax extension of . . . ”

Today, we will provide necessary and sufficient conditions for the existence of
identity-preserving lax extensions.



What is Behavioural Equivalence?



Non-deterministic Transition Systems

For non-deterministic transition systems:

Definition (Park 1981; Milner 1989)
Two states in (possibly distinct) systems are bisimilar if there is a relation between
the underlying sets of the systems that relates them and preserves and reflects
transitions.

“Bisimilarity is behavioural equivalence!”

Questions:

• Is there a high-level reason why this definition works?
• Can we transport the definition to other systems?

Answer: Yes! (But to understand this we need a bit of category theory.)



Non-deterministic Transition Systems

For non-deterministic transition systems:

Definition (Park 1981; Milner 1989)
Two states in (possibly distinct) systems are bisimilar if there is a relation between
the underlying sets of the systems that relates them and preserves and reflects
transitions.

“Bisimilarity is behavioural equivalence!”

Questions:

• Is there a high-level reason why this definition works?
• Can we transport the definition to other systems?

Answer: Yes! (But to understand this we need a bit of category theory.)



Universal Coalgebra

Rutten 2000
Key ingredients: coalgebra, coalgebra homomorphism and bisimulation.

Let F : Set → Set be a functor. An F-coalgebra (X, α) consists of a set X and a map
α : X → FX. A morphism f : (X, α) → (Y, β) of F-coalgebras is a map f : X → Y such
that β · f = Ff · α.

Intuition:

• X is a set of states;
• α : X → FX is a transition map α : X → FX assigning to each state x ∈ X a

collection α(x) of successors, structured according to F;
• f : (X, α) → (Y, β) is a map that preserve the behaviour of states.



Bisimulations Coalgebraically

Let F : Set → Set be a functor.

1. Extend F to a relator L, i.e. to a monotone map on relations s.t.
r : X−7−→Y 7→ Lr : FX−7−→FY.

2. Then, a relation r : X−7−→Y is an L-bisimulation from an F-coalgebra (X,a) to an
L-coalgebra (Y, β) if for all x ∈ X and y ∈ Y,

x r y =⇒ α(x) Lr β(y).

Remark
For all F-coalgebras (X, α) and (Y, β) there is a largest L-bisimulation from (X, α) to
(Y, β) which is called L-bisimilarity.



The Barr Relator

Definition
Given a relation r : X−7−→Y, take a span (π1 : A → X, π2 : A → Y) such that r = π2 · π◦

1 .
Then, put Fr = Fπ2 · (Fπ1)◦.

The Barr relator of F

• agrees with F on functions;
• preserves converses, i.e. F(r◦) = (Fr)◦, where r◦ is the converse relation of r.
• in general, it does not preserve composition laxly, i.e., Fr · Fs ̸≤ F(r · s).

Example
The Barr relator of the powerset functor P sends a relation r to the relation given
by: APr B ⇐⇒ (∀a ∈ A ∃b ∈ B.a r b) ∧ (∀b ∈ B ∃a ∈ A.b r a).



Universal Coalgebra

Example
The powerset functor P : Set → Set sends
• a set X to the set PX of subsets of X,
• a function f : X → Y to the function Pf : PX → PY that assings A ⊆ X to f [A].

• P-coalgebras are non-deterministic transition systems.
• P-coalgebra homomorphisms are transition preserving and reflecting maps.
• P-bisimulations are transition preserving and reflecting relations.

We can transport the definition of bisimilarity from non-deterministic transition
systems to other systems! But does it make sense to do so?



Behavioural Equivalence

Definition
States x and y in coalgebras (X, α) and (Y, β), respectively, are behaviourally
equivalent if there is a coalgebra (Z, γ) and morphisms f : (X, α) → (Z, γ),
g : (Y, β) → (Z, γ) such that f (x) = g(y).

Problem: It is hard to work with this definition.

Solution: Bisimulations as witnesses for coalgebraic behavioural equivalence!

Now we have an explanation:

Example
For the powerset functor, Barr-bisimilarity coincides with behavioural equivalence.



Good Notions of Bisimulation



Good Notions of Bisimulation

We are interested in relators whose class of L-bisimulations

• contains all coalgebra homomorphisms.
because coalgebra homomorphisms are behaviour-preserving maps.

• is closed under converses.
because behavioural equivalence is symmetric.

• is closed under composition.
• because in many situations this is important to show that L-bisimilarity

coincides with behavioural equivalence (and some other nice properties).

We have shown that these properties essentially characterize lax extensions.



Lax Extensions

Definition
A (symmetric) lax extension L : Rel → Rel of a functor F : Set → Set is an F-relator
s.t.

1. Ff ≤ Lf ,
2. L(r◦) = (Lr)◦,

3. Ls · Lr ≤ L(s · r),
for all r : X−7−→Y, s : Y−7−→Z and f : X → Y. A lax extension is identity-preserving or
normal if L1X = 1FX, for every set X.

The Barr relator is a lax extension iff the functor preserves weak pullbacks!



Identity-preserving Lax Extensions

Let L : Rel → Rel be a lax extension of a functor F : Set → Set.

Theorem (MV15)
If L is identity-preserving, then L-bisimilarity coincides with behavioural
equivalence.

Conversely, we have shown:

Theorem
In practise, if L-bisimilarity coincides with behavioural equivalence, then L is
identity-preserving.



Existence of Identity-preserving Lax Extensions



Characterization

Since the smallest lax extension of a functor is given by the laxification of its Barr
relator:
Corollary

A functor F : Set → Set admits a identity-preserving lax extension iff for every set X
and every composable sequence of relations r1, . . . , rn

rn · . . . · r1 = 1X =⇒ Frn · . . . · Fr1 = 1FX.

So, we have a characterization. . . but we are looking for something simpler!



Preservation of Weak Pullbacks

Definition

A commutative square
W Y

X Z

q

p = g

f

is a weak pullback if for all x ∈ X and y ∈ Y

s.t. f (x) = g(y) there is w ∈ W s.t. x = p(w) and y = q(w).

Example
For every function f : X → Z the following diagram – the inverse image of the
empty set w.r.t f – is a weak pullback.

∅ ∅

X Z

=

f



Weak Pullbacks

Definition

We say that a functor F : Set → Set preserves weak pullbacks, 1/4-iso (weak)
pullbacks, 1/4-mono (weak) pullbacks and 4/4-epi weak pullbacks if it sends weak
pullbacks of the following forms, respectively, to weak pullbacks

W Y

X Z

W Y

X Z

≃ W Y

X Z

W Y

X Z,

with arrows ↣, ↠ and ≃−→ indicating injectivity, surjectivity and bijectivity,
correspondingly.



Neighbourhood Functors

Example
• The neighbourhood functor N : Set → Set sends

• a set X to the set PPX of neighbourhood systems of X,
• a function f : X → Y to the function N f : NX → NY that assigns to every element
A ∈ NX the set {B ⊆ Y | f−1B ∈ A}.

• The monotone neighbourhood functor M is the subfunctor of N that sends a
set X to the set MX of monotone neighbourhood systems of X,
∀A ∈ A. (A ⊆ B =⇒ B ∈ A).

• Coalgebras for the (monotone) neighbourhood functor are (monotone)
neighbourhood frames.



Examples

• The powerset functor P preserves weak pullbacks.

• The monotone neighbourhood functor M
• preserves 1/4-iso pullbacks and 4/4-epi weak pullbacks;
• does not preserve 1/4-mono pullbacks.

• The neighbourhood functor N
• preserves 4/4-epi weak pullbacks;
• does not preserve 1/4-iso pullbacks.

Proof : it does not preserve the inverse image of the empty set w.r.t the map
!2 : {a,b} → {∗}.



What Was Known

• Every functor that preserves weak pullbacks admits an identity-preserving lax
extension.

Ex: The powerset functor P

• There are functors that do not preserve weak pullbacks that admit
identity-preserving lax extensions.

Ex: The monotone neighourhood functor M.

• There are functors that do not admit identity-preserving lax extensions.
The neighbourhood functor N [Marti and Venema 2015].



What Is Known

preserves
weak

pullbacks

preserves 1/4-mono
(weak) pullbacks

preserves 1/4-iso
and 4/4-epi weak pullbacks

admits
identity-preserving

lax extensions

preserves
1/4-iso

pullbacks

Solid arrows are contributions, dashed arrows are trivial. All implications are
non-reversible.



Example: M-weighted Transition Systems

Example

Given a commutative monoid (M,+,0) (or just M), the monoid-valued functor M(−)

maps a set X to the set M(X) of functions µ : X → M with finite support, i.e. µ(x) ̸= 0
for only finitely many x.

M(−)-coalgebras correspond to M-weighted transition systems, and we have:

Corollary

A (commutative) monoid-valued functor admits an identity-preserving lax
extension iff the monoid is positive.

Since the additive monoid Z id not positive, there is no “good” notion of
bisimulation for Z-weighted transition systems!



Open Questions

• Useful characterization of the functors that admit an identity-preserving lax
extension.
• We need new strategies to go beyond our sufficient conditions.
• Not clear how to unify both cases.

• Useful characterization of the functors that admit a greatest
identity-preserving lax extension.
• Maximally permissive notion of bisimulation.
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