IDENTITY-PRESERVING LAX EXTENSIONS AND WHERE TO FIND THEM

Pedro Nora (collaboration with S. Goncharov, D. Hofmann, L. Schröder and P. Wild) March 5, 2025

Radboud University pedro.nora@ru.nl

This talk is about the **correspondence**:

"There is a **good** way of showing that states in a generalized transition system are behaviourally equivalent."

"There is an identity-preserving lax extension of ..."

Today, we will provide necessary and sufficient conditions for the existence of identity-preserving lax extensions.

WHAT IS BEHAVIOURAL EQUIVALENCE?

For non-deterministic transition systems:

Definition (Park 1981; Milner 1989)

Two states in (possibly distinct) systems are bisimilar if there is a relation between the underlying sets of the systems that relates them and preserves and reflects transitions.

"Bisimilarity is behavioural equivalence!"

Questions:

- Is there a high-level reason why this definition works?
- · Can we transport the definition to other systems?

For non-deterministic transition systems:

Definition (Park 1981; Milner 1989)

Two states in (possibly distinct) systems are bisimilar if there is a relation between the underlying sets of the systems that relates them and preserves and reflects transitions.

"Bisimilarity is behavioural equivalence!"

Questions:

- Is there a high-level reason why this definition works?
- · Can we transport the definition to other systems?

Answer: Yes! (But to understand this we need a bit of category theory.)

Rutten 2000

Key ingredients: coalgebra, coalgebra homomorphism and bisimulation.

Let F: Set \rightarrow Set be a functor. An F-coalgebra (X, α) consists of a set X and a map $\alpha \colon X \rightarrow \mathsf{FX}$. A morphism $f \colon (X, \alpha) \rightarrow (Y, \beta)$ of F-coalgebras is a map $f \colon X \rightarrow Y$ such that $\beta \cdot f = \mathsf{F}f \cdot \alpha$.

Intuition:

- X is a set of **states**;
- $\alpha : X \to FX$ is a **transition map** $\alpha : X \to FX$ assigning to each state $x \in X$ a collection $\alpha(x)$ of successors, structured according to F;
- $f: (X, \alpha) \rightarrow (Y, \beta)$ is a map that preserve the **behaviour** of states.

Let $F\colon \mbox{Set} \to \mbox{Set}$ be a functor.

- 1. Extend F to a relator L, i.e. to a monotone map on relations s.t. $r: X \rightarrow Y \mapsto Lr: FX \rightarrow FY$.
- 2. Then, a relation $r: X \rightarrow Y$ is an L-bisimulation from an F-coalgebra (X, a) to an L-coalgebra (Y, β) if for all $x \in X$ and $y \in Y$,

$$x r y \implies \alpha(x) \operatorname{Lr} \beta(y).$$

Remark

For all F-coalgebras (X, α) and (Y, β) there is a largest L-bisimulation from (X, α) to (Y, β) which is called L-bisimilarity.

Definition

Given a relation $r: X \to Y$, take a span $(\pi_1: A \to X, \pi_2: A \to Y)$ such that $r = \pi_2 \cdot \pi_1^\circ$. Then, put $\overline{F}r = F\pi_2 \cdot (F\pi_1)^\circ$.

The Barr relator of F

- agrees with F on functions;
- preserves converses, i.e. $\overline{F}(r^{\circ}) = (\overline{F}r)^{\circ}$, where r° is the converse relation of r.
- in general, it does **not** preserve composition laxly, i.e., $\overline{F}r \cdot \overline{F}s \leq \overline{F}(r \cdot s)$.

Example

The Barr relator of the powerset functor \mathcal{P} sends a relation r to the relation given by: $A\overline{\mathcal{P}}rB \iff (\forall a \in A \exists b \in B.arb) \land (\forall b \in B \exists a \in A.bra).$

Example

The powerset functor $\mathcal{P}\colon \mathbf{Set}\to\mathbf{Set}$ sends

- a set *X* to the set *PX* of subsets of *X*,
- a function $f: X \to Y$ to the function $\mathcal{P}f: \mathcal{P}X \to \mathcal{P}Y$ that assings $A \subseteq X$ to f[A].
- \mathcal{P} -coalgebras are non-deterministic transition systems.
- \mathcal{P} -coalgebra homomorphisms are transition preserving and reflecting maps.
- $\overline{\mathcal{P}}$ -bisimulations are transition preserving and reflecting relations.

We can transport the definition of bisimilarity from non-deterministic transition systems to other systems! But does it make sense to do so?

Definition

States x and y in coalgebras (X, α) and (Y, β) , respectively, are **behaviourally** equivalent if there is a coalgebra (Z, γ) and morphisms $f: (X, \alpha) \to (Z, \gamma)$, $g: (Y, \beta) \to (Z, \gamma)$ such that f(x) = g(y).

Problem: It is hard to work with this definition.

Solution: Bisimulations as witnesses for coalgebraic behavioural equivalence!

Now we have an explanation:

Example

For the powerset functor, Barr-bisimilarity **coincides** with behavioural equivalence.

GOOD NOTIONS OF BISIMULATION

We are interested in relators whose class of L-bisimulations

• contains all coalgebra homomorphisms.

because coalgebra homomorphisms are behaviour-preserving maps.

• is closed under converses.

because behavioural equivalence is symmetric.

- is closed under composition.
 - because in many situations this is important to show that L-bisimilarity coincides with behavioural equivalence (and some other nice properties).

We have shown that these properties essentially characterize lax extensions.

Definition

A (symmetric) **lax extension** L: Rel \rightarrow Rel of a functor F: Set \rightarrow Set is an F-relator s.t.

- 1. F $f \leq Lf$,
- 2. $L(r^{\circ}) = (Lr)^{\circ}$,
- 3. Ls \cdot Lr \leq L(s \cdot r),

for all $r: X \rightarrow Y$, $s: Y \rightarrow Z$ and $f: X \rightarrow Y$. A lax extension is *identity-preserving* or *normal* if $L_{1X} = 1_{FX}$, for every set X.

The Barr relator is a lax extension iff the functor preserves weak pullbacks!

Let L: Rel \rightarrow Rel be a lax extension of a functor F: Set \rightarrow Set.

Theorem (MV15) If L is identity-preserving, then L-bisimilarity coincides with behavioural equivalence.

Conversely, we have shown:

Theorem

In practise, if L-bisimilarity coincides with behavioural equivalence, then L is identity-preserving.

EXISTENCE OF IDENTITY-PRESERVING LAX EXTENSIONS

Since the smallest lax extension of a functor is given by the laxification of its Barr relator:

Corollary

A functor $F\colon$ Set \to Set admits a identity-preserving lax extension iff for every set X and every composable sequence of relations r_1,\ldots,r_n

$$r_n \cdot \ldots \cdot r_1 = \mathbf{1}_X \implies \overline{F}r_n \cdot \ldots \cdot \overline{F}r_1 = \mathbf{1}_{FX}.$$

So, we have a characterization...but we are looking for something simpler!

PRESERVATION OF WEAK PULLBACKS

Definition

A commutative square $\begin{array}{c} W \xrightarrow{q} Y \\ p \downarrow = \int g \text{ is a weak pullback if for all } x \in X \text{ and } y \in Y \\ X \xrightarrow{f} Z \\ \text{s.t. } f(x) = q(y) \text{ there is } w \in W \text{ s.t. } x = p(w) \text{ and } y = q(w). \end{array}$

Example

For every function $f: X \to Z$ the following diagram – the inverse image of the empty set w.r.t f – is a weak pullback.

Definition

We say that a functor F: Set \rightarrow Set preserves **weak pullbacks**, **1/4-iso (weak) pullbacks**, **1/4-mono (weak) pullbacks** and **4/4-epi weak pullbacks** if it sends weak pullbacks of the following forms, respectively, to weak pullbacks

with arrows \rightarrowtail , \rightarrow and $\xrightarrow{\simeq}$ indicating injectivity, surjectivity and bijectivity, correspondingly.

Example

- The neighbourhood functor $\mathcal{N}\colon \mathsf{Set}\to\mathsf{Set}$ sends
 - a set X to the set \mathcal{PPX} of neighbourhood systems of X,
 - a function $f: X \to Y$ to the function $\mathcal{N}f: \mathcal{N}X \to \mathcal{N}Y$ that assigns to every element $\mathcal{A} \in \mathcal{N}X$ the set $\{B \subseteq Y \mid f^{-1}B \in \mathcal{A}\}.$
- The monotone neighbourhood functor \mathcal{M} is the subfunctor of \mathcal{N} that sends a set X to the set $\mathcal{M}X$ of **monotone** neighbourhood systems of X, $\forall A \in \mathcal{A}$. $(A \subseteq B \implies B \in \mathcal{A})$.
- Coalgebras for the (monotone) neighbourhood functor are (monotone) neighbourhood frames.

- The powerset functor ${\mathcal P}$ preserves weak pullbacks.
- The monotone neighbourhood functor $\ensuremath{\mathcal{M}}$
 - preserves 1/4-iso pullbacks and 4/4-epi weak pullbacks;
 - does **not** preserve 1/4-mono pullbacks.
- The neighbourhood functor $\ensuremath{\mathcal{N}}$
 - preserves 4/4-epi weak pullbacks;
 - does **not** preserve 1/4-iso pullbacks.

Proof: it does not preserve the inverse image of the empty set w.r.t the map $!_2 \colon \{a, b\} \to \{*\}.$

• Every functor that preserves weak pullbacks admits an identity-preserving lax extension.

Ex: The powerset functor \mathcal{P}

• There are functors that do not preserve weak pullbacks that admit identity-preserving lax extensions.

Ex: The monotone neighourhood functor \mathcal{M} .

- There are functors that do not admit identity-preserving lax extensions. The neighbourhood functor ${\cal N}$ [Marti and Venema 2015].

WHAT IS KNOWN

Solid arrows are contributions, dashed arrows are trivial. All implications are non-reversible.

Example

Given a commutative monoid (M, +, 0) (or just M), the monoid-valued functor $M^{(-)}$ maps a set X to the set $M^{(X)}$ of functions $\mu : X \to M$ with finite support, i.e. $\mu(x) \neq 0$ for only finitely many x.

 $M^{(-)}$ -coalgebras correspond to M-weighted transition systems, and we have:

Corollary

A (commutative) monoid-valued functor admits an identity-preserving lax extension iff the monoid is positive.

Since the additive monoid \mathbb{Z} id **not** positive, there is **no** "good" notion of bisimulation for \mathbb{Z} -weighted transition systems!

- Useful characterization of the functors that admit an identity-preserving lax extension.
 - We need new strategies to go beyond our sufficient conditions.
 - Not clear how to unify both cases.
- Useful characterization of the functors that admit a greatest identity-preserving lax extension.
 - Maximally permissive notion of bisimulation.