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(1,2)-TSP: (3/2 + €)-approx 1 pass

A reduction from maximum matching

N\,

it is very hard to break 3/2-approx in 1 pass.

Question:

Better approximation by more passes?



Our results:



Our results:

Theorem

Given an instance of (1,2)-TSP , there is a (4/3-+¢)-approximation algorithm
that runs in poly(1/¢) passes in the semi-streaming model.



Our results:

Theorem

Given an instance of (1,2)-TSP , there is a (4/3-+¢)-approximation algorithm
that runs in poly(1/¢) passes in the semi-streaming model.

Theorem

Given an arbitrary weighted graph, there is a (7/12 — ¢)-approximation algo-
rithm for MAX-TSP that runs in poly(1/¢) passes in the semi-streaming model.
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rest of the talk
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p: length of the path cover, T: TSP cost

T = 2n —p

a-approximation of MPC

<

~ (2 — «a)-approximation of (1,2)-TSP
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M, < Find a maximum matching
G /M; < Contraction of G on M;
M; < Find a maximum matching on G /M,

Return M{ U M>

Theorem: (2/3)-approximation
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P*: MPC such that |P* N M| is maximal
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M C (' s.t.
w(M) > (1-1/£) - w(C)/2

worst case: w(M) > w(C)/3




Analysis:

C*: Max-TSP



Analysis:

C*: Max-TSP

M+: Maximum matching



Analysis:

C*: Max-TSP

M+: Maximum matching



Analysis:

C™: Max-TSP
M+: Maximum matching

Consider C' = C* /(M N C*)



Analysis:

C™: Max-TSP
M+: Maximum matching

Consider C' = C* /(M N C*)



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2




Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2
M | M,



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2
M | M,

disjoint union of paths and cylces



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2
M | M,

disjoint union of paths and cylces



Analysis:

C”: Max-TSP

M+: Maximum matching
Consider C' = C* /(M N C*)
AM C C s.t. w(M) = w(C)/2
M | M,

disjoint union of paths and cylces

AMy C M s.t. w(Ms) > w(M)/3 ~w(C)/6



Analysis:

C*: Max-TSP

M+: Maximum matching

Consider C = C* /(M7 N C*) ( §
AM C C s.t. w(M) = w(C)/2 ; ;
M/ M,

disjoint union of paths and cylces

AMy C M s.t. w(Ms) > w(M)/3 ~w(C)/6

w(M;) + w(Ms) > w(My) + WEZ0AN) > (7/19) . (C*)
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Open Questions: ’,

Better analysis for Max-TSP

What happens if we repeat the process to find M3, ...

Bottleneck: M; U Ms U M3 U --- is not necessarily a path cover

Maintain feasibality: remove some edges



Thanks for Listening!
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