Improved Approximation Algorithms for (1,2)-TSP and Max-TSP Using Path Covers in the Semi-Streaming Model

Ermiya Farokhnejad, University of Warwick

Joint work with:

Sharareh Alipour, Tehran Institute for Advanced Studies (TeIAS)

Tobias Mömke, University of Augsburg

Given a complete graph:

Find a tour with minimum cost

Given a complete graph:

Find a tour with minimum cost

Cost: 28

Given a complete graph:

Find a tour with minimum cost

Cost: 35

Given a complete graph:

Find a tour with minimum cost

Cost: 25

Given a complete graph:

Find a tour with minimum cost

Given a complete graph:

Find a tour with minimum cost

Variants:

Given a complete graph:

Find a tour with minimum cost

Variants:

Metric TSP

Given a complete graph:

Find a tour with minimum cost

Variants:

Metric TSP

Graphic TSP

Given a complete graph:

Find a tour with minimum cost

Variants:

Metric TSP

Graphic TSP

(1,2)-TSP

Given a complete graph:

Find a tour with minimum cost

Variants:

Metric TSP

Graphic TSP

(1,2)-TSP

Max-TSP

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

(1,2)-TSP:

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

$$(1,2)$$
-TSP: $(3/2 + \epsilon)$ -approx 1 pass

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

$$(1,2)$$
-TSP: $(3/2 + \epsilon)$ -approx 1 pass

A reduction from maximum matching

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

$$(1,2)$$
-TSP: $(3/2 + \epsilon)$ -approx 1 pass

A reduction from maximum matching

it is very hard to break 3/2-approx in 1 pass.

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

$$(1,2)$$
-TSP: $(3/2 + \epsilon)$ -approx 1 pass

A reduction from maximum matching

it is very hard to break 3/2-approx in 1 pass.

Question:

Behnezhad, Roghani, Rubinstein, Saberi [ICALP 2024]

$$(1,2)$$
-TSP: $(3/2 + \epsilon)$ -approx 1 pass

A reduction from maximum matching

it is very hard to break 3/2-approx in 1 pass.

Question:

Better approximation by more passes?

Our results:

Our results:

Theorem

Given an instance of (1,2)-TSP, there is a $(4/3+\epsilon)$ -approximation algorithm that runs in $poly(1/\epsilon)$ passes in the semi-streaming model.

Our results:

Theorem

Given an instance of (1,2)-TSP, there is a $(4/3+\epsilon)$ -approximation algorithm that runs in $poly(1/\epsilon)$ passes in the semi-streaming model.

Theorem

Given an arbitrary weighted graph, there is a $(7/12 - \epsilon)$ -approximation algorithm for MAX-TSP that runs in poly $(1/\epsilon)$ passes in the semi-streaming model.

Reduction to Maximum Matching

Reduction to Maximum Matching

[Huang, Su] [PODC23]:

Reduction to Maximum Matching

[Huang, Su] [PODC23]:

Reduction to Maximum Matching

[Huang, Su] [PODC23]:

Reduction to Maximum Matching

[Huang, Su] [PODC23]:

Reduction to Maximum Matching

[Huang, Su] [PODC23]:

Path cover:

Path cover:
union of vertex-disjoint paths
covering all nodes

Path cover:
union of vertex-disjoint paths
covering all nodes

Path cover:
union of vertex-disjoint paths
covering all nodes

Find a path cover with maximum number of edges

Path cover:
union of vertex-disjoint paths
covering all nodes

Find a path cover with maximum number of edges

Path cover:
union of vertex-disjoint paths
covering all nodes

Find a path cover with maximum number of edges

step 1: focus on edges of weight 1

step 1: focus on edges of weight 1

step 1: focus on edges of weight 1

step 2: find an MPC

step 1: focus on edges of weight 1

step 2: find an MPC

step 1: focus on edges of weight 1

step 2: find an MPC

step 3: complete it to a tour

step 1: focus on edges of weight 1

step 2: find an MPC

step 3: complete it to a tour

 ρ : length of the path cover, T: TSP cost

$$T \approx 2n - \rho$$

 ρ : length of the path cover, T: TSP cost

$$T \approx 2n - \rho$$

 α -approximation of MPC

 $\approx (2 - \alpha)$ -approximation of (1, 2)-TSP

Observation:

Observation:

Maximum matching

Observation:

Maximum matching

(1/2)-approximation of MPC

Observation:

Maximum matching

(1/2)-approximation of MPC

Observation:

Maximum matching

(1/2)-approximation of MPC

 $M_1 \leftarrow \text{Find a maximum matching}$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_2 \leftarrow \text{Find a maximum matching on } G/M_1$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_2 \leftarrow \text{Find a maximum matching on } G/M_1$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_2 \leftarrow \text{Find a maximum matching on } G/M_1$

Return $M_1 \cup M_2$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_2 \leftarrow \text{Find a maximum matching on } G/M_1$

Return $M_1 \cup M_2$

 $M_1 \leftarrow \text{Find a maximum matching}$

 $G/M_1 \leftarrow \text{Contraction of } G \text{ on } M_1$

 $M_2 \leftarrow \text{Find a maximum matching on } G/M_1$

Return $M_1 \cup M_2$

Theorem: (2/3)-approximation

 $\rho(G) := \text{size of the MPC on } G$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^{\star} : MPC such that $|P^{\star} \cap M_1|$ is maximal

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^* : MPC such that $|P^* \cap M_1|$ is maximal

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^* : MPC such that $|P^* \cap M_1|$ is maximal

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^* : MPC such that $|P^* \cap M_1|$ is maximal

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^* : MPC such that $|P^* \cap M_1|$ is maximal

 $G^{\star}: P^{\star}/M_1 \to \text{very special graph (deg: 1,2 or 4)}$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^* : MPC such that $|P^* \cap M_1|$ is maximal

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^{\star} : MPC such that $|P^{\star} \cap M_1|$ is maximal

 $G^{\star}: P^{\star}/M_1 \to \text{very special graph (deg: 1,2 or 4)}$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^{\star} : MPC such that $|P^{\star} \cap M_1|$ is maximal

 $G^*: P^*/M_1 \to \text{very special graph (deg: 1,2 or 4)}$

Lemma: $\mu(G^*) \ge \frac{|E(G^*)| - |V_4(G^*)|}{3}$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^{\star} : MPC such that $|P^{\star} \cap M_1|$ is maximal

 $G^*: P^*/M_1 \to \text{very special graph (deg: 1,2 or 4)}$

Lemma:
$$\mu(G^*) \ge \frac{|E(G^*)| - |V_4(G^*)|}{3}$$
$$= \frac{|P^*| - |P^* \cap M_1| - |M_1 \setminus P^*|}{3}$$

 $\rho(G) := \text{size of the MPC on } G$

 $\mu(G) := \text{size of maximum matching of } G$

 P^{\star} : MPC such that $|P^{\star} \cap M_1|$ is maximal

 $G^*: P^*/M_1 \to \text{very special graph (deg: 1,2 or 4)}$

Lemma:
$$\mu(G^*) \ge \frac{|E(G^*)| - |V_4(G^*)|}{3}$$

$$= \frac{|P^*| - |P^* \cap M_1| - |M_1 \setminus P^*|}{3}$$

$$= \frac{\rho(G) - |M_1|}{3}$$

 G^{\star}

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

approx
$$\geq 2/3$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

approx $\geq 2/3$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

approx
$$\geq 2/3$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

 $approx \ge 2/3$

$$|M_1| = 3$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

approx
$$\geq 2/3$$

$$|M_1|=3$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

approx
$$\geq 2/3$$

$$|M_1| = 3 \quad |M_2| = 1$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

approx $\geq 2/3$

$$|M_1| = 3 \quad |M_2| = 1$$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

 $approx \ge 2/3$

$$|M_1| = 3 |M_2| = 1$$

 $|P^*| = 6$

$$|M_1 \cup M_2| = |M_1| + |M_2|$$

 $\ge |M_1| + \frac{\rho(G) - |M_1|}{3}$
 $\ge \frac{2}{3} \cdot \rho(G)$

$$approx \ge 2/3$$

 $approx \leq 2/3$

$$|M_1| = 3 |M_2| = 1$$
 $|P^*| = 6$

Maximum Matching

$$(1 - \epsilon)$$
-approx

Maximum Matching

$$(1 - \epsilon)$$
-approx

Maximum Path Cover

$$(2/3 - \epsilon)$$
-approx

Maximum Matching

$$(1 - \epsilon)$$
-approx

Maximum Path Cover

$$(2/3 - \epsilon)$$
-approx

(1, 2)-TSP

 $(4/3 + \epsilon)$ -approx

G: complete weighted graph

G: complete weighted graph

Find a Hamiltonian cycle with maximum weight

G: complete weighted graph

Find a Hamiltonian cycle with maximum weight

Algorithm:

Same algorithm with weighted matching

G: complete weighted graph

Find a Hamiltonian cycle with maximum weight

Algorithm:

Same algorithm with weighted matching

Theorem:

(7/12)-approximation

$$\exists M \subseteq P \text{ s.t. } w(M) \ge w(P)/2$$

$$\exists M \subseteq C \text{ s.t.}$$

$$w(M) \ge (1 - 1/\ell) \cdot w(C)/2$$

Observation:

 $\exists M \subseteq C \text{ s.t.}$

$$w(M) \ge (1 - 1/\ell) \cdot w(C)/2$$

worst case: $w(M) \ge w(C)/3$

 C^* : Max-TSP

 C^* : Max-TSP

 M_1 : Maximum matching

 C^* : Max-TSP

 M_1 : Maximum matching

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^* : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^* : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^* : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^* : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^* : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 C^* : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 $\exists M \subseteq C \text{ s.t. } w(M) \approx w(C)/2$

 M/M_1

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

 $\exists M \subseteq C \text{ s.t. } w(M) \approx w(C)/2$

 M/M_1

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

$$\exists M \subseteq C \text{ s.t. } w(M) \approx w(C)/2$$

$$M/M_1$$

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider $C = C^*/(M_1 \cap C^*)$

$$\exists M \subseteq C \text{ s.t. } w(M) \approx w(C)/2$$

 M/M_1

$$\exists M_2 \subseteq \mathbf{M} \text{ s.t. } w(M_2) \geq w(\mathbf{M})/3 \approx w(C)/6$$

 C^{\star} : Max-TSP

 M_1 : Maximum matching

Consider
$$C = C^*/(M_1 \cap C^*)$$

$$\exists M \subseteq C \text{ s.t. } w(M) \approx w(C)/2$$

$$M/M_1$$

$$\exists M_2 \subseteq \mathbf{M} \text{ s.t. } w(M_2) \geq w(\mathbf{M})/3 \approx w(C)/6$$

$$w(M_1) + w(M_2) \ge w(M_1) + \frac{w(C^*) - w(M_1)}{6} \ge (7/12) \cdot w(C^*)$$

Conclusion:

Maximum Weighted Matching

$$(1 - \epsilon)$$
-approx

Conclusion:

Maximum Weighted Matching

$$(1 - \epsilon)$$
-approx

Max-TSP

$$(7/12 - \epsilon)$$
-approx

Better analysis for Max-TSP

Better analysis for Max-TSP

What happens if we repeat the process to find M_3 , ...

Better analysis for Max-TSP

What happens if we repeat the process to find M_3 , ...

Bottleneck: $M_1 \cup M_2 \cup M_3 \cup \cdots$ is not necessarily a path cover

Better analysis for Max-TSP

What happens if we repeat the process to find M_3 , ...

Bottleneck: $M_1 \cup M_2 \cup M_3 \cup \cdots$ is not necessarily a path cover

Better analysis for Max-TSP

What happens if we repeat the process to find M_3 , ...

Bottleneck: $M_1 \cup M_2 \cup M_3 \cup \cdots$ is not necessarily a path cover

Better analysis for Max-TSP

What happens if we repeat the process to find M_3 , ...

Bottleneck: $M_1 \cup M_2 \cup M_3 \cup \cdots$ is not necessarily a path cover

Maintain feasibality: remove some edges

Thanks for Listening!