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Integer and Rational Distances



(Distance) a-Independent Set

Distance a-Independent Set:
Find a maximum subset S C V(G), s.t. all u,v € S have distance > a.

e |ndSet = 2-IndSet is NP-hard [Karp 1972]

'We assume a tree-decomposition of width tw as part of the input.
2Assuming SETH, there isno e > 0 and an (a — )™ - n°" time algorithm.
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Find a maximum subset S C V(G), s.t. all u,v € S have distance > a.

e 1-IndSetisinP [trivial]
e |ndSet = 2-IndSet is NP-hard [Karp 1972]
e a-IndSet, for a > 3, is NP-hard

(even for planar bipartite subcubic graphs). [Eto, Guo, Miyano 2012]

e aIndSetin time a™(@ . nM) 1 tight under SETH.2
[Katsikarelis, Lampis, Paschos 2019]
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a-Indeper

0-Dispersion, positive 6 € R

fixed positive distance 6 € R

Input: Graph G with unit length
edges

Task: Place maximum d-dispersed
set in G,

that is a set of points pairwise in
distance §.
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Normalize Solutions

» Wilog. a 2-dispersed set has all its points on a vertex or a
midpoint of an edge.
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a-Indeper

DO B W N =

Normalize Solutions

» Wilog. a 2-dispersed set has all its points on a vertex or a
midpoint of an edge.

» 2-dispersed set in G = 4-IndSet in Ga.
¢-dispersed set in G = (2a)-IndSet in Gy,

v
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Bounded Treewidth Graphs

Theorem
Let integers &, b’ define gcd(d',b') =candca=4d andcb=1"b.
e |f gcd(d, b') is odd:
If a=1, &-IndSet on b’-subdivided graphs isin P,
else can be solved in time a - n°") (tight under SETH).
e Ifgcd(&, b') is even:
If ae {1,2}, &@-IndSet on b/-subdivided graphs is in P,
else can be solved in time (2a)! - n°(") (tight under SETH).
o If @ € {1,2}, Z-Dispersion is in P;
else can be solved in (2a)™ - n°(") time (tight under SETH).



Irrational Distances



Irrational Distance

e For every non-rational 4:
d-Dispersion is NP-hard.
[H,Lendl 2022]

e What about graphs of
bounded treewidth?
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Irrational Distance

Theorem (Reminder)
Let integers &, b’ define gcd(d',b') =candca=4d andcb="b'.If & € {1,2},
& -Dispersion is in P; else can be solved in (2a) - n°() time (tight under SETH).

What about a fixed irrational §?
e.g. 6 =0.01011...j... with i = 1iff the j-th TM halts on e.
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o-Dispersion is not computable, ... even on paths!

Above ¢ is not efficiently comparable to rationals.



Irrational but Efficiently Comparable

consider § that is efficiently comparable to rationals:
given x, y, iff < ¢ is decidable in poly(log x + log y).

By a rounding argument:
é-dispersion = 2-dispersion with a, b < 2n with polytime comp.
[H, Lendl 2022]
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Irrational but Efficiently Comparable

consider § that is efficiently comparable to rationals:
given x, y, iff < ¢ is decidable in poly(log x + log y).

By a rounding argument:
é-dispersion = 2-dispersion with a, b < 2n with polytime comp.
[H, Lendl 2022]

Corollary (XP algorithm)
s-Dispersion is computable in (a°() nO(1) =) nO™w) time.

Theorem (W[1]-hardness

There is an efficiently comparable irrational
§=(457°,27%)"1 ~ 0.790085. ..

for which §-Dispersion is W[1]-hard in treewidth.
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Hardness Reduction

Cn-DISPERSION < 0n-DISPERSION
tw O(k) =P tw O(k)
L9 [ Il
COLORFULCLIQUE 7~ ™~__ 5-DISPERSION
k color classes same same tw O(k)
each of size n 5 — I

(¢cn — 1)- DISPERSION Yn-DISPERSION

tw O(k) =P tw O(k)
Step 1: Leeway Step 2: Approximating ¢
(but ¢, depends on n) Yn < Y1 < 0 < dpiy < Op

(by translations and subdivisions)



Summary



Independence

e a-IndSet on b-subdivided graphs:
P vs NP,
FPT vs W[1]-hard in solution size

e Ifnotin P, in time of form a* . n©(1)
(tight under SETH).

e irrational but efficiently comparable

0.790085. . . -Dispersion
is W[1]-hard in treewidth
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