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Integer and Rational Distances



(Distance) a-Independent Set

Distance a-Independent Set:
Find a maximum subset S ⊆ V (G), s.t. all u, v ∈ S have distance ≥ a.

• 1-IndSet is in P [trivial]

• IndSet = 2-IndSet is NP-hard [Karp 1972]

• a-IndSet, for a ≥ 3, is NP-hard
(even for planar bipartite subcubic graphs). [Eto, Guo, Miyano 2012]

• a-IndSet in time atw(G) · nO(1),1 tight under SETH.2
[Katsikarelis, Lampis, Paschos 2019]

1We assume a tree-decomposition of width tw as part of the input.
2Assuming SETH, there is no ε > 0 and an (a − ε)tw · nO(1) time algorithm.
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• [Grigoriev, H, Lendl, Woeginger 2019]:
2-IndSet on 2-subdivided graphs is in P.
4-IndSet on 2-subdivided graphs is in P.

Actually:
1-Dispersion and 2-Dispersion is in P.

. . . and a-IndSet on b-subdivided graphs?
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δ-Dispersion, positive δ ∈ R

▶ fixed positive distance δ ∈ R
▶ Input: Graph G with unit length

edges

▶ Task: Place maximum δ-dispersed
set in G,
that is a set of points pairwise in
distance δ.
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Normalize Solutions
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▶ 2-dispersed set in G = 4-IndSet in G2.

▶ a
b -dispersed set in G = (2a)-IndSet in G2b.
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Bounded Treewidth Graphs

Theorem
Let integers a′,b′ define gcd(a′,b′) = c and ca = a′ and cb = b′.

• If gcd(a′,b′) is odd:
If a = 1, a′-IndSet on b′-subdivided graphs is in P,
else can be solved in time atw · nO(1) (tight under SETH).

• If gcd(a′,b′) is even:
If a ∈ {1,2}, a′-IndSet on b′-subdivided graphs is in P,
else can be solved in time (2a)t · nO(1) (tight under SETH).

• If a′ ∈ {1,2}, a′

b′ -Dispersion is in P;
else can be solved in (2a)tw · nO(1) time (tight under SETH).



Irrational Distances



Irrational Distance

• For every non-rational δ:
δ-Dispersion is NP-hard.

[H,Lendl 2022]

• What about graphs of
bounded treewidth?



Irrational Distance

Theorem (Reminder)
Let integers a′,b′ define gcd(a′,b′) = c and ca = a′ and cb = b′. If a′ ∈ {1,2},
a′

b′ -Dispersion is in P; else can be solved in (2a)tw · nO(1) time (tight under SETH).

What about a fixed irrational δ?

e.g. δ = 0.01011 . . . i . . . with i = 1 iff the i-th TM halts on ε.

v0 v1 v2 v3 vℓ

δ-Dispersion is not computable, . . . even on paths!

Above δ is not efficiently comparable to rationals.
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Irrational but Efficiently Comparable
consider δ that is efficiently comparable to rationals:
given x , y , if x

y ≤ δ is decidable in poly(log x + log y).

By a rounding argument:
δ-dispersion = a

b -dispersion with a,b ≤ 2n with polytime comp.
[H, Lendl 2022]

Corollary (XP algorithm)
δ-Dispersion is computable in (aO(tw)nO(1) =) nO(tw) time.

Theorem (W[1]-hardness
There is an efficiently comparable irrational
δ = (4

∑∞
j=1 2−2j

)−1 ≈ 0.790085 . . .
for which δ-Dispersion is W[1]-hard in treewidth.
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Hardness Reduction

COLORFULCLIQUE

k color classes
each of size n

≤p

cn-DISPERSION

tw O(k)

≤p

≤
p

same

(cn − 1)- DISPERSION

tw O(k)

≤p

same

≤p

δn-DISPERSION

tw O(k)

γn-DISPERSION

tw O(k)
=

=

δ-DISPERSION

tw O(k)

︸ ︷︷ ︸
Step 1: Leeway

(but cn depends on n)

︸ ︷︷ ︸
Step 2: Approximating δ

γn < γn+1 < δ < δn+1 < δn

(by translations and s u b d i v i s i o n s)
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Summary



Independence

• a-IndSet on b-subdivided graphs:
P vs NP,
FPT vs W[1]-hard in solution size

• If not in P, in time of form atw · nO(1)

(tight under SETH).
• irrational but efficiently comparable

0.790085 . . . -Dispersion
is W[1]-hard in treewidth
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