Independence and Domination on Bounded-Treewidth Graphs: Integer, Rational, and Irrational Distances

Tim Hartmann, Dániel Marx

CISPA, Saarbrücken, Germany

STACS March 5th, 2025

Integer and Rational Distances

Distance *a*-Independent Set: Find a maximum subset $S \subseteq V(G)$, s.t. all $u, v \in S$ have distance $\geq a$.

IndSet = 2-IndSet is NP-hard

[Karp 1972]

¹We assume a tree-decomposition of width *tw* as part of the input. ²Assuming SETH, there is no $\varepsilon > 0$ and an $(a - \varepsilon)^{tw} \cdot n^{O(1)}$ time algorithm.

Distance *a*-Independent Set:

Find a maximum subset $S \subseteq V(G)$, s.t. all $u, v \in S$ have distance $\geq a$.

- 1-IndSet is in P
- IndSet = 2-IndSet is NP-hard

[trivial] [Karp 1972]

¹We assume a tree-decomposition of width *tw* as part of the input. ²Assuming SETH, there is no $\varepsilon > 0$ and an $(a - \varepsilon)^{tw} \cdot n^{O(1)}$ time algorithm.

Distance *a*-Independent Set:

Find a maximum subset $S \subseteq V(G)$, s.t. all $u, v \in S$ have distance $\geq a$.

- 1-IndSet is in P
- IndSet = 2-IndSet is NP-hard
- *a*-IndSet, for $a \ge 3$, is NP-hard (even for planar bipartite subcubic graphs). [E

[Eto, Guo, Miyano 2012]

[trivial]

[Karp 1972]

¹We assume a tree-decomposition of width *tw* as part of the input. ²Assuming SETH, there is no $\varepsilon > 0$ and an $(a - \varepsilon)^{tw} \cdot n^{O(1)}$ time algorithm.

Distance *a*-Independent Set:

Find a maximum subset $S \subseteq V(G)$, s.t. all $u, v \in S$ have distance $\geq a$.

- 1-IndSet is in P
- IndSet = 2-IndSet is NP-hard
- *a*-IndSet, for $a \ge 3$, is NP-hard (even for planar bipartite subcubic graphs). [Eto, Guo, Miyano 2012]
- *a*-IndSet in time $a^{tw(G)} \cdot n^{O(1)}$,¹ tight under SETH.²

[Katsikarelis, Lampis, Paschos 2019]

[trivial]

[Karp 1972]

¹We assume a tree-decomposition of width *tw* as part of the input. ²Assuming SETH, there is no $\varepsilon > 0$ and an $(a - \varepsilon)^{tw} \cdot n^{O(1)}$ time algorithm.

[Grigoriev, H, Lendl, Woeginger 2019]:
2-IndSet on 2-subdivided graphs is in P.
4-IndSet on 2-subdivided graphs is in P.
Actually:

1-Dispersion and 2-Dispersion is in P.

[Grigoriev, H, Lendl, Woeginger 2019]:
2-IndSet on 2-subdivided graphs is in P.
4-IndSet on 2-subdivided graphs is in P.
Actually:
1 Dispersion and 2 Dispersion is in P.

1-Dispersion and 2-Dispersion is in P.

... and *a*-IndSet on *b*-subdivided graphs?

[Grigoriev, H, Lendl, Woeginger 2019]:
2-IndSet on 2-subdivided graphs is in P.
4-IndSet on 2-subdivided graphs is in P.
Actually:

1-Dispersion and 2-Dispersion is in P.

ıs?

Dispersing Obnoxious Facilities on a Graph STACS 2019

a-Indeper

Dispersing Obnoxious Facilities on a Graph STACS 2019

Alexander Grigoriev, <u>Tim A. Hartmann</u>, Stefan Lendl, Gerhard J. Woeginger

March 15, 2019

19]: ร in P. ร in P. า P. hs?

• fixed positive distance $\delta \in \mathbb{R}$

set in G.

distance δ .

Input: Graph G with unit length edges

• Task: Place maximum δ -dispersed

that is a set of **points** pairwise in

19]: 5 in P. 5 in P. 1 P. hs?

a-Indeper Normalize Solutions

a-Indeper Normalize Solutions

а

NP-hard, FPT in solution size NP-hard, W[1]-hard

NP-hard, FPT in solution size NP-hard, W[1]-hard

$$\frac{a}{b}$$
-disp(G) = $c\frac{a}{b}$ -disp(G)

NP-hard, FPT in solution size NP-hard, W[1]-hard

$$\frac{a}{b}$$
-disp $(G) = c\frac{a}{b}$ -disp (G)

s u b d i v i s i o n
$$\frac{a}{b}$$
-disp(G) = $\frac{ca}{b}$ -disp(G_c)

NP-hard, FPT in solution size NP-hard, W[1]-hard

 $\frac{a}{b}$ -disp(G) = $c\frac{a}{b}$ -disp(G)

translation

$$\frac{a}{b}$$
-disp(G) = $\frac{a}{a+b}$ -disp(G) + |E|

s u b d i v i s i o n
$$\frac{a}{b}$$
-disp(G) = $\frac{ca}{b}$ -disp(G_c)

a-IndSet on b-Subdivided Graphs (2019) b I 5 [|] 10 11 а

This Work

b a	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														

This Work

Bounded Treewidth Graphs

Theorem

Let integers a', b' define gcd(a', b') = c and ca = a' and cb = b'.

- If gcd(a', b') is odd: If a = 1, a'-IndSet on b'-subdivided graphs is in P, else can be solved in time $a^{tw} \cdot n^{O(1)}$ (tight under SETH).
- If gcd(a', b') is even: If $a \in \{1, 2\}$, a'-IndSet on b'-subdivided graphs is in P, else can be solved in time $(2a)^t \cdot n^{O(1)}$ (tight under SETH).
- If $a' \in \{1, 2\}$, $\frac{a'}{b'}$ -Dispersion is in P; else can be solved in $(2a)^{tw} \cdot n^{O(1)}$ time (tight under SETH).

- For every non-rational δ : δ -Dispersion is NP-hard. [H,Lendl 2022]
- What about graphs of bounded treewidth?

Theorem (Reminder)

Let integers a', b' define gcd(a', b') = c and ca = a' and cb = b'. If $a' \in \{1, 2\}$, $\frac{a'}{b'}$ -Dispersion is in P; else can be solved in $(2a)^{tw} \cdot n^{O(1)}$ time (tight under SETH).

What about a fixed **irrational** δ ?

Theorem (Reminder)

Let integers a', b' define gcd(a', b') = c and ca = a' and cb = b'. If $a' \in \{1, 2\}$, $\frac{a'}{b'}$ -Dispersion is in P; else can be solved in $(2a)^{tw} \cdot n^{O(1)}$ time (tight under SETH).

What about a fixed **irrational** δ ? e.g. $\delta = 0.01011...i...$ with i = 1 iff the *i*-th TM halts on ε .

Theorem (Reminder)

Let integers a', b' define gcd(a', b') = c and ca = a' and cb = b'. If $a' \in \{1, 2\}$, $\frac{a'}{b'}$ -Dispersion is in P; else can be solved in $(2a)^{tw} \cdot n^{O(1)}$ time (tight under SETH).

What about a fixed **irrational** δ ?

e.g. $\delta = 0.01011 \dots i \dots$ with i = 1 iff the *i*-th TM halts on ε .

 δ -Dispersion is not computable, ... even on paths!

Above δ is not **efficiently comparable** to rationals.

Irrational but Efficiently Comparable

consider δ that is **efficiently comparable** to rationals: given *x*, *y*, if $\frac{x}{y} \leq \delta$ is decidable in *poly*(log *x* + log *y*).

By a rounding argument: δ -dispersion = $\frac{a}{b}$ -dispersion with $a, b \leq 2n$ with polytime comp.

[H, Lendl 2022]

Irrational but Efficiently Comparable

consider δ that is **efficiently comparable** to rationals: given *x*, *y*, if $\frac{x}{y} \leq \delta$ is decidable in *poly*(log *x* + log *y*).

```
By a rounding argument: \delta-dispersion = \frac{a}{b}-dispersion with a, b \leq 2n with polytime comp.
```

```
[H, Lendl 2022]
```

Corollary (XP algorithm)

δ-Dispersion is computable in ($a^{O(tw)}n^{O(1)} =$) $n^{O(tw)}$ time.

Irrational but Efficiently Comparable

consider δ that is **efficiently comparable** to rationals: given *x*, *y*, if $\frac{x}{y} \leq \delta$ is decidable in *poly*(log *x* + log *y*).

```
By a rounding argument: \delta-dispersion = \frac{a}{b}-dispersion with a, b \leq 2n with polytime comp.
```

```
[H, Lendl 2022]
```

Corollary (XP algorithm)

δ-Dispersion is computable in ($a^{O(tw)}n^{O(1)} =$) $n^{O(tw)}$ time.

Theorem (W[1]-hardness

There is an **efficiently comparable irrational** $\delta = (4 \sum_{j=1}^{\infty} 2^{-2^j})^{-1} \approx 0.790085...$ for which δ -Dispersion is W[1]-hard in *treewidth*.

COLORFULCLIQUE k color classes each of size n

 \leq_{p}

 δ -DISPERSION tw O(k)

 c_n -DISPERSION tw O(k)

COLORFULCLIQUE k color classes each of size n

 δ -DISPERSION tw O(k)

Step 1: Leeway (but *c*_n depends on *n*)

Summary

Independence

- a-IndSet on b-subdivided graphs: P vs NP, FPT vs W[1]-hard in solution size
- If not in P, in time of form $a^{tw} \cdot n^{O(1)}$ (tight under SETH).
- irrational but efficiently comparable 0.790085...-Dispersion is W[1]-hard in treewidth

Independence and Domination

