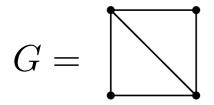
Listing spanning trees of outerplanar graphs by pivot-exchanges

Nastaran Behrooznia (University of Warwick) **Torsten Mütze** (Universität Kassel)

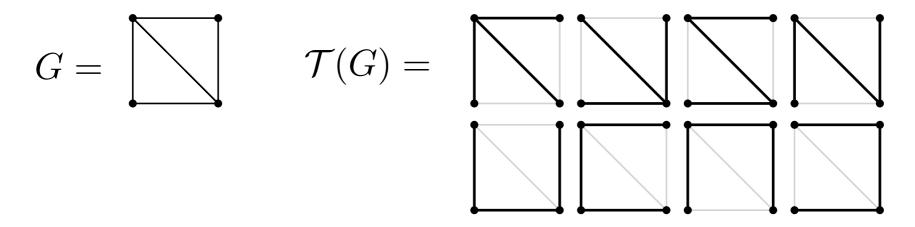
STACS 2025

• Graph G; let $\mathcal{T}(G)$ be the set of its spanning trees

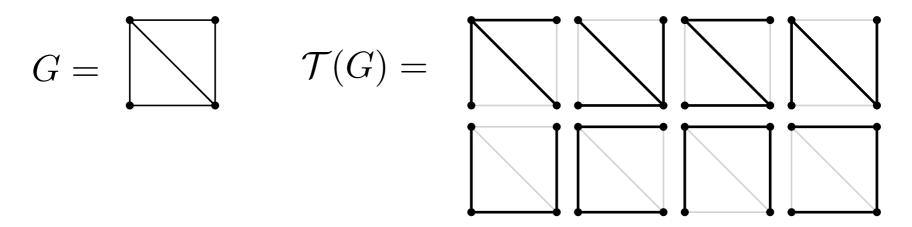
• Graph G; let $\mathcal{T}(G)$ be the set of its spanning trees



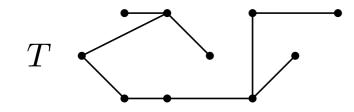
• Graph G; let $\mathcal{T}(G)$ be the set of its spanning trees



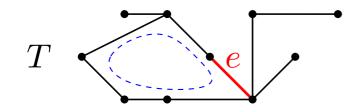
• Graph G; let $\mathcal{T}(G)$ be the set of its spanning trees

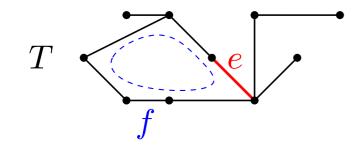


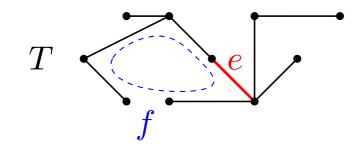
 of fundamental interest in many CS settings: optimization, counting, random sampling, exhaustive generation











• edge exchange: $T' = T + e - f = T \triangle \{e, f\}$

• flip graph $\mathcal{F}(G)$: vertex set $\mathcal{T}(G)$, edges are exchanges

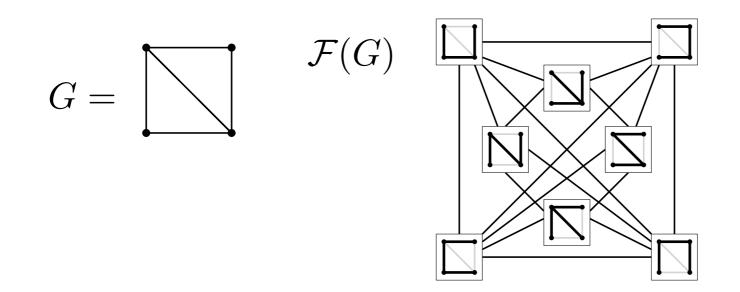
• edge exchange: $T' = T + e - f = T \triangle \{e, f\}$

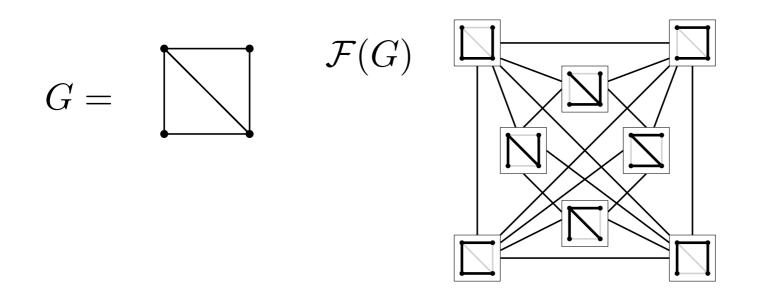
• flip graph $\mathcal{F}(G)$: vertex set $\mathcal{T}(G)$, edges are exchanges

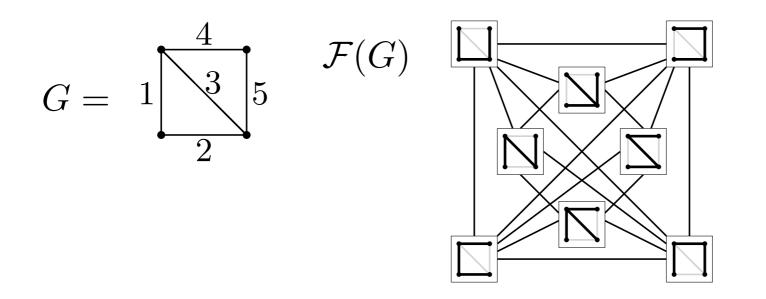
$$G =$$

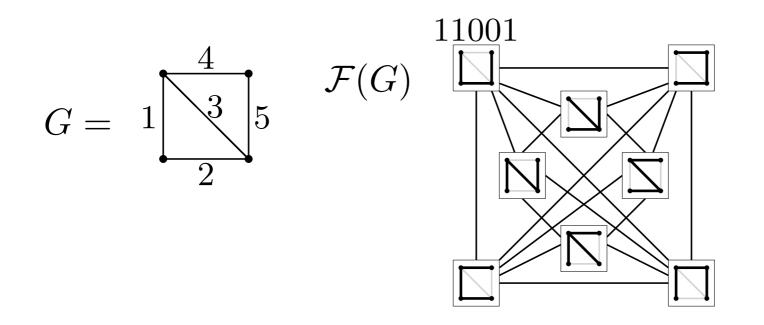
• edge exchange: $T' = T + e - f = T \triangle \{e, f\}$

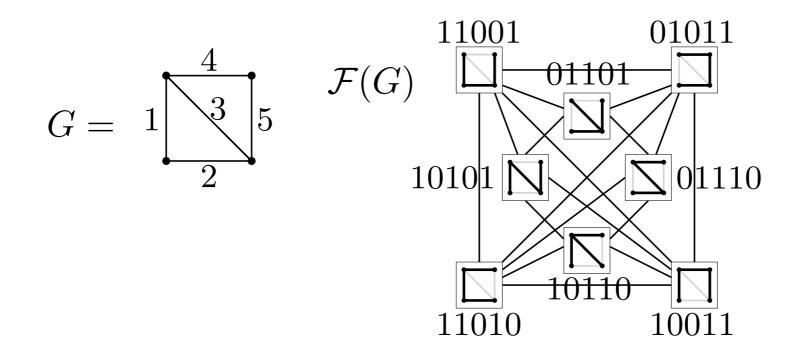
• flip graph $\mathcal{F}(G)$: vertex set $\mathcal{T}(G)$, edges are exchanges



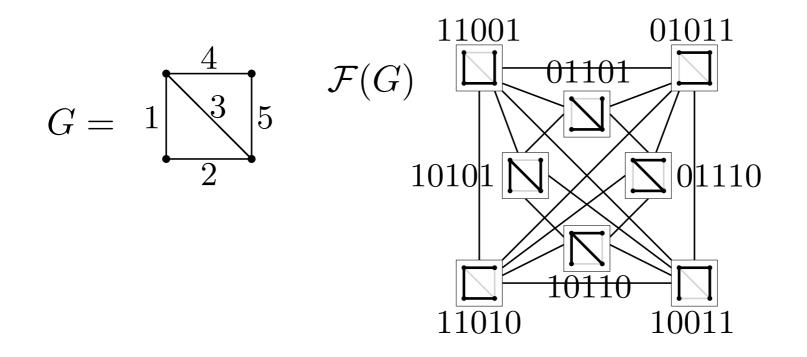




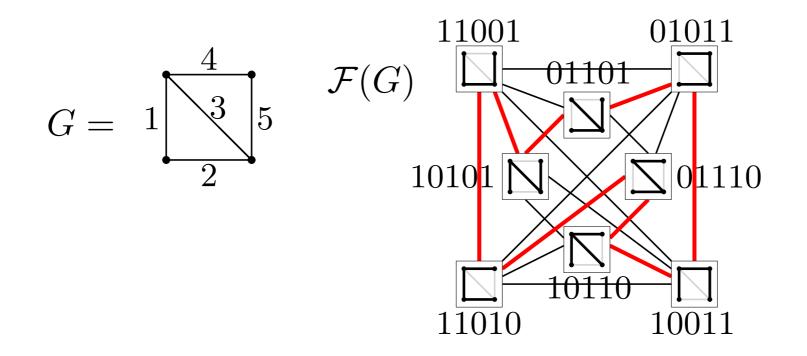




- flip graph $\mathcal{F}(G)$ equals the skeleton of the polytope that is obtained by taking the convex hull of all characteristic vectors of spanning trees
- This talk: find a Hamilton cycle/path in $\mathcal{F}(G)$



- flip graph $\mathcal{F}(G)$ equals the skeleton of the polytope that is obtained by taking the convex hull of all characteristic vectors of spanning trees
- This talk: find a Hamilton cycle/path in $\mathcal{F}(G)$



• it is known that a Hamilton cycle exists [Cummins'66]

- it is known that a Hamilton cycle exists [Cummins'66]
- [Harary, Holzmann'72]: true more generally for **base** exchange flip graph of any matroid

- it is known that a Hamilton cycle exists [Cummins'66]
- [Harary, Holzmann'72]: true more generally for **base** exchange flip graph of any matroid
- [Naddef, Pulleyblank'84]: skeleton of any 0/1-polytope has a Hamilton cycle

- it is known that a Hamilton cycle exists [Cummins'66]
- [Harary, Holzmann'72]: true more generally for **base** exchange flip graph of any matroid
- [Naddef, Pulleyblank'84]: skeleton of any 0/1-polytope has a Hamilton cycle
- [Smith'97]: Hamilton cycle in $\mathcal{F}(G)$ can be computed in time $\mathcal{O}(1)$ per tree

- it is known that a Hamilton cycle exists [Cummins'66]
- [Harary, Holzmann'72]: true more generally for **base** exchange flip graph of any matroid
- [Naddef, Pulleyblank'84]: skeleton of any 0/1-polytope has a Hamilton cycle
- [Smith'97]: Hamilton cycle in $\mathcal{F}(G)$ can be computed in time $\mathcal{O}(1)$ per tree
- restricting the allowed edge exchanges?

• **pivot-exchange** [Cameron, Grubb, Sawada'24]: exchanged edges must have a common end vertex

$$f$$
 e 7

$$T' = T + e - f$$

• **pivot-exchange** [Cameron, Grubb, Sawada'24]: exchanged edges must have a common end vertex

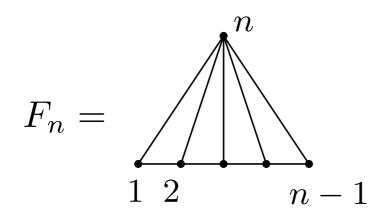
$$T' = T + e - f$$

- corresponds to a subgraph $\mathcal{F}_{\mathrm{p}}(G)$ of $\mathcal{F}(G)$

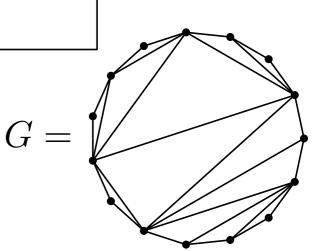
• Question [Cameron, Grubb, Sawada'24]: Does $\mathcal{F}_p(G)$ have Hamilton path/cycle?

- Question [Cameron, Grubb, Sawada'24]: Does $\mathcal{F}_{p}(G)$ have Hamilton path/cycle?
- special case of an even harder problem raised in Knuth's book 'The Art of Computer Programming' (problem 102 in Section 7.2.1.6)

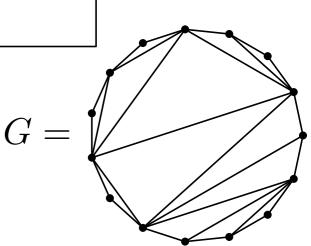
- Question [Cameron, Grubb, Sawada'24]: Does $\mathcal{F}_{p}(G)$ have Hamilton path/cycle?
- special case of an even harder problem raised in Knuth's book 'The Art of Computer Programming' (problem 102 in Section 7.2.1.6)
- Theorem [Cameron, Grubb, Sawada'24]: For $G = F_n$ a fan graph, there is a Hamilton cycle in $\mathcal{F}_p(G)$.



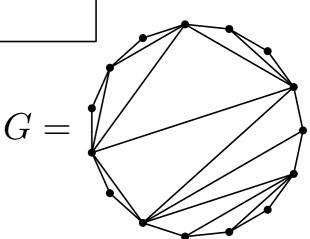
• Theorem: For any outerplane triangulation G, $\mathcal{F}_{p}(G)$ has a Hamilton path.



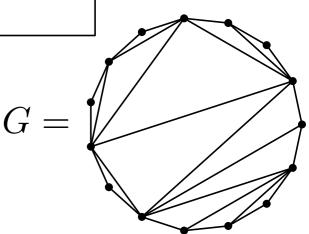
- Theorem: For any outerplane triangulation G, $\mathcal{F}_{p}(G)$ has a Hamilton path.
- outer face incident with every vertex



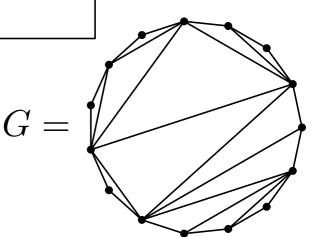
- Theorem: For any outerplane triangulation G, $\mathcal{F}_{p}(G)$ has a Hamilton path.
- outer face incident with every vertex
- all inner faces are triangles



- Theorem: For any outerplane triangulation G, $\mathcal{F}_{p}(G)$ has a Hamilton path.
- outer face incident with every vertex
- all inner faces are triangles
- includes fan graphs as special case

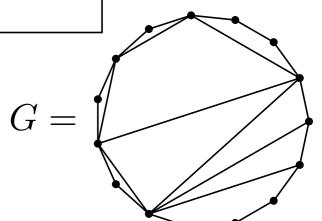


- Theorem: For any outerplane triangulation G, $\mathcal{F}_{p}(G)$ has a Hamilton path.
- outer face incident with every vertex
- all inner faces are triangles
- includes fan graphs as special case



• can be computed by a simple algorithm in time $\mathcal{O}(n\log n)$ per spanning tree

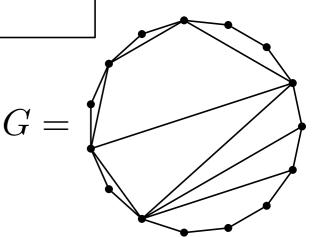
- Theorem: For any outerplane triangulation G, $\mathcal{F}_{p}(G)$ has a Hamilton path.
- outer face incident with every vertex
- all inner faces are triangles
- includes fan graphs as special case



- can be computed by a simple algorithm in time $\mathcal{O}(n\log n)$ per spanning tree
- general outerplane graphs G?

Our results

- Theorem: For any outerplane triangulation G, $\mathcal{F}_p(G)$ has a Hamilton path.
- outer face incident with every vertex
- all inner faces are triangles
- includes fan graphs as special case



- can be computed by a simple algorithm in time $\mathcal{O}(n\log n)$ per spanning tree
- general outerplane graphs G? Still true for exchanges {e, f} such that e and f share a common end vertex or a common face (=pivot- or face-exchanges)

edge-labeling of G: bijection $\ell : E(G) \to \{1, \ldots, m\}$

$$G = 1 \underbrace{\boxed{3}_{2}}_{2} 5$$

edge-labeling of G: bijection $\ell : E(G) \rightarrow \{1, \ldots, m\}$

$$G = 1 \underbrace{\boxed{3}}_{2} 5$$

- Algorithm G
 - Visit the initial spanning tree \widetilde{T}

edge-labeling of G: bijection $\ell : E(G) \rightarrow \{1, \ldots, m\}$

$$G = 1 \underbrace{\boxed{3}}_{2} 5$$

- Algorithm G
 - Visit the initial spanning tree \widetilde{T}
 - Repeatedly perform an exchange {e, f} that minimizes max{e, f} and yields an unvisited spanning tree. Terminate if no such exchange exists.

edge-labeling of G: bijection $\ell : E(G) \to \{1, \ldots, m\}$

$$G = 1 \underbrace{\boxed{3}}_{2} 5$$

- Algorithm G
 - Visit the initial spanning tree \widetilde{T}
 - Repeatedly perform an exchange {e, f} that minimizes
 max{e, f} and yields an unvisited spanning tree.
 Terminate if no such exchange exists.

ties may arise (same value $\max\{e, f\} = \max\{e', f\}$)

input graph

input graph edge labeling

input graph edge labeling initial spanning tree

input graph edge labeling initial spanning tree tie-breaking rule • **Theorem** [Mütze, Merino, Williams'22]: $\forall G, \forall \ell, \forall \tilde{T}, \forall \tau$: Algorithm G computes a Hamilton path in $\mathcal{F}(G)$.

input graph edge labeling initial spanning tree tie-breaking rule • **Theorem** [Mütze, Merino, Williams'22]: $\forall G, \forall \ell, \forall \tilde{T}, \forall \tau$: Algorithm G computes a Hamilton path in $\mathcal{F}(G)$.

• Theorem:

 \forall outerplane triangulation G, $\exists \ell$, $\forall \widetilde{T}$, $\exists \tau$: Algorithm G computes a Hamilton path in $\mathcal{F}_{p}(G)$.

Open problems

• for which graphs G is there a Hamilton path/cycle in $\mathcal{F}_{\rm p}(G)?$... outerplane graphs, complete graphs...

Open problems

- for which graphs G is there a Hamilton path/cycle in $\mathcal{F}_{\rm p}(G)?$... outerplane graphs, complete graphs...
- Knuth [TAOCP]: Is there a 'nice' Hamilton cycle in $\mathcal{F}(K_n)$?

Thank you!