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Introduction

e Graph Gj let T(G) be the set of its spanning trees
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e of fundamental interest in many CS settings: optimization,
counting, random sampling, exhaustive generation
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Edge exchanges

e flip graph F(G) equals the skeleton of the polytope that is
obtained by taking the convex hull of all characteristic vectors
of spanning trees
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Edge exchanges

e flip graph F(G) equals the skeleton of the polytope that is
obtained by taking the convex hull of all characteristic vectors

of spanning trees

e This talk: find a Hamilton cycle/path in F7(G)
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Edge exchanges

e flip graph F(G) equals the skeleton of the polytope that is
obtained by taking the convex hull of all characteristic vectors
of spanning trees

e This talk: find a Hamilton cycle/path in F7(G)
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Hamiltonicity of F(G)

it is known that a Hamilton cycle exists [Cummins'606]

[Harary, Holzmann'72]: true more generally for base
exchange flip graph of any matroid

Naddef, Pulleyblank’'84]: skeleton of any 0/1-polytope
nas a Hamilton cycle

Smith'97]: Hamilton cycle in F(G) can be computed in
time O(1) per tree

restricting the allowed edge exchanges?
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Pivot-exchanges

e pivot-exchange [Cameron, Grubb, Sawada'24]: exchanged
edges must have a common end vertex

_____

W T"=T+e—f

e corresponds to a subgraph F,(G) of F(G)
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Pivot-exchanges

¢ Question [Cameron, Grubb, Sawada’24]:
Does F,(G) have Hamilton path/cycle?

e special case of an even harder problem raised in Knuth's
book ‘The Art of Computer Programming’ (problem 102
in Section 7.2.1.6)

e Theorem [Cameron, Grubb, Sawada’'24]|:
For G = F), a fan graph, there is a Hamilton cycle in F,(G).
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Our results

Theorem: For any outerplane triangulation G,
F»(G) has a Hamilton path.

outer face incident with every vertex
all inner faces are triangles
includes fan graphs as special case

can be computed by a simple algorithm in time O(nlogn)
per spanning tree

general outerplane graphs G7 Still true for exchanges {e, f}
such that e and f share a common end vertex or a common
face (=pivot- or face-exchanges)
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A simple greedy algorithm

edge-labeling of GG: bijection ¢ : E(G) — {1,...,m}

o Algorithm G
e Visit the initial spanning tree T
e Repeatedly perform an exchange {e, f} that minimizes

max{e, f} and yields an unvisited spanning tree.
Terminate if no such exchange exists.

\

ties may arise (same value max{e, f} = max{e’, f})



Applying Algorithm G

e Theorem [Mitze,Merino,Williams'22]:

VG, V¢, VT, VT
Algorithm G computes a Hamilton path in F(G).



Applying Algorithm G

input graph

o Tlieorem [Mutze,Merino,Williams'22]:
VG, Y0, NT, Y
Algorithm G computes a Hamilton path in F(G).



Applying Algorithm G

input graph
edge labeling

o Tlieoi'em [Mutze,Merino,Williams'22]:
VG, Y0, NT, Y
Algorithm G computes a Hamilton path in F(G).



Applying Algorithm G

input graph
edge labeling
Initial spanning tree

o Tlieoi'errl [Mutze,Merino,Williams'22]:
VG, Y0, NT, Y
Algorithm G computes a Hamilton path in F(G).



Applying Algorithm G

input graph

edge labeling

Initial spanning tree
tie-breaking rule

o Tlieoi'errl [M\Qtze,I\/Ierino,WiIIiams’22]:
VG, Y0, NT, Y
Algorithm G computes a Hamilton path in F(G).




Applying Algorithm G

input graph

edge labeling

Initial spanning tree
tie-breaking rule

° Tlieoi'errl [M\Qtze,I\/Ierino,WiIIiams’22]:

VG, Y0, NT, Y
Algorithm G computes a Hamilton path in F(G).

e Theorem: N
Y outerplane triangulation G, 3¢, VI', dt:
Algorithm G computes a Hamilton path in F,(G).
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e for which graphs G is there a Hamilton path/cycle in
Fu(G)? ... outerplane graphs, complete graphs...

e Knuth [TAOCP]: Is there a ‘nice’ Hamilton cycle in
F(Kn)?



Thank youl



