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• of fundamental interest in many CS settings: optimization,
counting, random sampling, exhaustive generation
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• it is known that a Hamilton cycle exists [Cummins’66]

• [Harary, Holzmann’72]: true more generally for base
exchange flip graph of any matroid

• [Naddef, Pulleyblank’84]: skeleton of any 0/1-polytope
has a Hamilton cycle

• [Smith’97]: Hamilton cycle in F(G) can be computed in
time O(1) per tree

• restricting the allowed edge exchanges?
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• pivot-exchange [Cameron, Grubb, Sawada’24]: exchanged

edges must have a common end vertex

e
T ′ = T + e− f

f

• corresponds to a subgraph Fp(G) of F(G)
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• Question [Cameron, Grubb, Sawada’24]:

Does Fp(G) have Hamilton path/cycle?

• special case of an even harder problem raised in Knuth’s
book ‘The Art of Computer Programming’ (problem 102
in Section 7.2.1.6)

• Theorem [Cameron, Grubb, Sawada’24]:
For G = Fn a fan graph, there is a Hamilton cycle in Fp(G).

Fn =

1 2 n− 1

n
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edge-labeling of G: bijection ℓ : E(G) → {1, . . . ,m}

• Visit the initial spanning tree T̃

• Repeatedly perform an exchange {e, f} that minimizes
max{e, f} and yields an unvisited spanning tree.
Terminate if no such exchange exists.
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ties may arise (same value max{e, f} = max{e′, f})
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input graph

edge labeling
initial spanning tree

• Theorem [Mütze,Merino,Williams’22]:

∀G, ∀ℓ, ∀T̃ , ∀τ :
Algorithm G computes a Hamilton path in F(G).

• Theorem:
∀ outerplane triangulation G, ∃ℓ, ∀T̃ , ∃τ :
Algorithm G computes a Hamilton path in Fp(G).

tie-breaking rule
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Open problems

• for which graphs G is there a Hamilton path/cycle in
Fp(G)? ... outerplane graphs, complete graphs...

• Knuth [TAOCP]: Is there a ‘nice’ Hamilton cycle in
F(Kn)?



Thank you!


