Local Enumeration: The Not-All-Equal Case

Mohit Gurumukhani Cornell University

Ramamohan Paturi University of California, San Diego

Michael Saks Rutgers University

Navid Talebanfard University of Sheffield

Definition($\Sigma\Pi\Sigma$ circuits)

Definition($\Sigma\Pi\Sigma$ circuits)

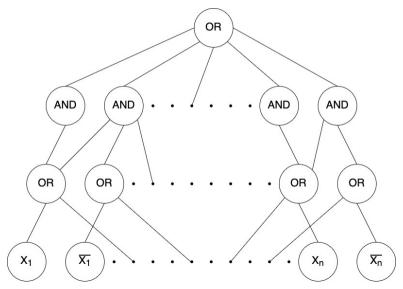
• Layers of OR, AND, OR gates.

Definition($\Sigma\Pi\Sigma$ circuits)

- Layers of OR, AND, OR gates.
- Bottom layer connected to input variables.

Definition($\Sigma\Pi\Sigma$ circuits)

- Layers of OR, AND, OR gates.
- Bottom layer connected to input variables.
- Output gate single OR gate at top.

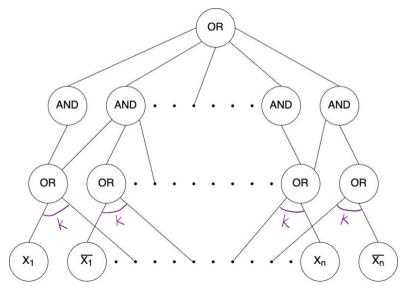


Definition($\Sigma\Pi\Sigma$ circuits)

- Layers of OR, AND, OR gates.
- Bottom layer connected to input variables.
- Output gate single OR gate at top.

Definition($\Sigma \Pi \Sigma_k$ circuits)

 $\Sigma\Pi\Sigma$ circuits where bottom layer *OR* gates have fan in *k*.



Why Depth 3 Circuits?

Strong depth 3 circuit lower bounds imply:

Why Depth 3 Circuits?

Strong depth 3 circuit lower bounds imply:

• Super-linear lower bounds for log-depth circuits [Valiant'77].

Why Depth 3 Circuits?

Strong depth 3 circuit lower bounds imply:

- Super-linear lower bounds for log-depth circuits [Valiant'77].
- Improved (3.9*n*) general circuit lower bounds [Golovnev-Kulikov-Williams'21].

Depth 3 Circuit Lower Bounds

• $\Sigma\Pi\Sigma$ Lower bound of $2^{\Omega(\sqrt{n})}$ known for PARITY, BCH code, and MAJORITY function.

- $\Sigma\Pi\Sigma$ Lower bound of $2^{\Omega(\sqrt{n})}$ known for PARITY, BCH code, and MAJORITY function.
- ΣΠΣ_k Lower bound of 2^{Ω(n/k)} known for PARITY, BCH code, and MAJORITY function [Håstad'1986, Paturi-Pudlák-Zane'1999, Paturi-Pudlák-Saks-Zane'2005, Håstad-Jukna-Pudlák'1995, ...].

- $\Sigma\Pi\Sigma$ Lower bound of $2^{\Omega(\sqrt{n})}$ known for PARITY, BCH code, and MAJORITY function.
- ΣΠΣ_k Lower bound of 2^{Ω(n/k)} known for PARITY, BCH code, and MAJORITY function [Håstad'1986, Paturi-Pudlák-Zane'1999, Paturi-Pudlák-Saks-Zane'2005, Håstad-Jukna-Pudlák'1995, ...].

Upper bounds for MAJORITY

- $\Sigma\Pi\Sigma$ Lower bound of $2^{\Omega(\sqrt{n})}$ known for PARITY, BCH code, and MAJORITY function.
- ΣΠΣ_k Lower bound of 2^{Ω(n/k)} known for PARITY, BCH code, and MAJORITY function [Håstad'1986, Paturi-Pudlák-Zane'1999, Paturi-Pudlák-Saks-Zane'2005, Håstad-Jukna-Pudlák'1995, ...].

Upper bounds for MAJORITY

• Can construct $\Sigma \Pi \Sigma$ circuit for MAJORITY of size $2^{O(\sqrt{n \log n})}$.

- $\Sigma\Pi\Sigma$ Lower bound of $2^{\Omega(\sqrt{n})}$ known for PARITY, BCH code, and MAJORITY function.
- ΣΠΣ_k Lower bound of 2^{Ω(n/k)} known for PARITY, BCH code, and MAJORITY function [Håstad'1986, Paturi-Pudlák-Zane'1999, Paturi-Pudlák-Saks-Zane'2005, Håstad-Jukna-Pudlák'1995, ...].

Upper bounds for MAJORITY

- Can construct $\Sigma \Pi \Sigma$ circuit for MAJORITY of size $2^{O(\sqrt{n \log n})}$.
- Can construct $\Sigma \Pi \Sigma_k$ circuit for MAJORITY of size $2^{O(\log(k)/k) \cdot n}$.

Definition (k-SAT)

Given *k*-CNF *F*, decide if it is satisfiable.

Definition (k-SAT)

Given *k*-CNF *F*, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time $2^{n-o(n/k)}$. [Paturi-Pudlák-Zane'1999, Schöning'1999, Paturi-Pudlák-Saks-Zane'2005, Chan-Williams'2019, Brakensiek-Guruswami'2019, ...]

Definition (k-SAT)

Given *k*-CNF *F*, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time $2^{n-o(n/k)}$. [Paturi-Pudlák-Zane'1999, Schöning'1999, Paturi-Pudlák-Saks-Zane'2005, Chan-Williams'2019, Brakensiek-Guruswami'2019, ...]

Super Strong Exponential Time Hypothesis (SSETH)

There does not exist a $2^{n-\omega(n/k)}$ time algorithm to solve k-SAT [Vyas-Williams'21].

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and $r \ge 0$, s.t. every satisfying assignment of F has Hamming weight $\ge r$, **output all satisfying assignments** of Hamming weight r.

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and $r \ge 0$, s.t. every satisfying assignment of F has Hamming weight $\ge r$, **output all satisfying assignments** of Hamming weight r.

Lower Bound via Construction

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and $r \ge 0$, s.t. every satisfying assignment of F has Hamming weight $\ge r$, **output all satisfying assignments** of Hamming weight r.

Lower Bound via Construction

 Can construct k-CNF with 2^{n-O(log(k)/k)·n} satisfying assignments of Hamming weight n/2 and no satisfying assignments of Hamming weight < n/2.

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and $r \ge 0$, s.t. every satisfying assignment of F has Hamming weight $\ge r$, **output all satisfying assignments** of Hamming weight r.

Lower Bound via Construction

- Can construct k-CNF with 2^{n-O(log(k)/k)·n} satisfying assignments of Hamming weight n/2 and no satisfying assignments of Hamming weight < n/2.
- Enum $(k, n/2) \ge 2^{n-O(\log(k)/k) \cdot n}$.

Lemma

If Enum(k, r) can be solved in time T(r):

Lemma

If Enum(k, r) can be solved in time T(r):

1. k-SAT can be solved in time T(n/2).

Lemma

If Enum(k, r) can be solved in time T(r):

- 1. k-SAT can be solved in time T(n/2).
- 2. MAJORITY requires $\Sigma \Pi \Sigma_k$ circuits of size $2^n/T(n/2)$.

Lemma

If Enum(k, r) can be solved in time T(r):

- 1. k-SAT can be solved in time T(n/2).
- 2. MAJORITY requires $\Sigma \Pi \Sigma_k$ circuits of size $2^n/T(n/2)$.

Corollary

If $Enum(k, n/2) \leq 2^{n-O(\log(k)/k) \cdot n}$:

Lemma

If Enum(k, r) can be solved in time T(r):

- 1. k-SAT can be solved in time T(n/2).
- 2. MAJORITY requires $\Sigma \Pi \Sigma_k$ circuits of size $2^n/T(n/2)$.

Corollary

If $Enum(k, n/2) \leq 2^{n-O(\log(k)/k) \cdot n}$:

1. Can solve k-SAT in time $2^{n-O(\log(k)/k)\cdot n}$, showing SSETH is False.

Lemma

If Enum(k, r) can be solved in time T(r):

- 1. k-SAT can be solved in time T(n/2).
- 2. MAJORITY requires $\Sigma \Pi \Sigma_k$ circuits of size $2^n/T(n/2)$.

Corollary

If $Enum(k, n/2) \leq 2^{n-O(\log(k)/k) \cdot n}$:

- 1. Can solve k-SAT in time $2^{n-O(\log(k)/k)\cdot n}$, showing SSETH is False.
- MAJORITY requires ΣΠΣ_k circuits of size 2^{Ω(log(k)/k)⋅n} and ΣΠΣ circuits of size 2^{Ω(√n log n)}.

Previous Work

G-Paturi-Pudlák-Saks-Talebanfard'2024

Previous Work

G-Paturi-Pudlák-Saks-Talebanfard'2024

• $\operatorname{Enum}(3, n/2)$ can be solved in time 1.598ⁿ.

Previous Work

G-Paturi-Pudlák-Saks-Talebanfard'2024

- $\operatorname{Enum}(3, n/2)$ can be solved in time 1.598ⁿ.
- MAJORITY requires ΣΠΣ₃ circuits of size ≥ 1.251ⁿ.

Previous Work

G-Paturi-Pudlák-Saks-Talebanfard'2024

- $\operatorname{Enum}(3, n/2)$ can be solved in time 1.598ⁿ.
- MAJORITY requires ΣΠΣ₃ circuits of size ≥ 1.251ⁿ.

This is Not Tight

By construction, Enum(3, n/2) requires time $\geq 6^{n/4} \approx 1.565^{n}$.

NAE Case

NAE Case

Definition (Not-All-Equal solution)

For *k*-CNF *F*, α is NAE solution if both α and $\overline{\alpha}$ satisfy *F*.

NAE Case

Definition (Not-All-Equal solution)

For *k*-CNF *F*, α is NAE solution if both α and $\overline{\alpha}$ satisfy *F*.

Definition (NAE Local Enumeration)

NAE-Enum(k, r): Given k-CNF F and $r \ge 0$, s.t. every **NAE** satisfying assignment of F has Hamming weight $\ge r$, **output all NAE satisfying assignments** of Hamming weight r.

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

1. (k-1)-SAT can be solved in time T(n/2).

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

- 1. (k-1)-SAT can be solved in time T(n/2).
- 2. Middle slice function requires $\Sigma \Pi \Sigma_{k-1}$ circuits of size $2^n/T(n/2)$.

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

- 1. (k-1)-SAT can be solved in time T(n/2).
- 2. Middle slice function requires $\Sigma \Pi \Sigma_{k-1}$ circuits of size $2^n/T(n/2)$.

Corollary

If NAE-Enum $(k, n/2) \leq 2^{n-O(\log(k)/k) \cdot n}$:

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

- 1. (k-1)-SAT can be solved in time T(n/2).
- 2. Middle slice function requires $\Sigma \Pi \Sigma_{k-1}$ circuits of size $2^n/T(n/2)$.

Corollary

If NAE-Enum $(k, n/2) \leq 2^{n-O(\log(k)/k) \cdot n}$:

1. Can solve k-SAT in time $2^{n-O(\log(k)/k)\cdot n}$, showing SSETH is False.

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

- 1. (k-1)-SAT can be solved in time T(n/2).
- 2. Middle slice function requires $\Sigma \Pi \Sigma_{k-1}$ circuits of size $2^n/T(n/2)$.

Corollary

If NAE-Enum $(k, n/2) \leq 2^{n-O(\log(k)/k) \cdot n}$:

- 1. Can solve k-SAT in time $2^{n-O(\log(k)/k)\cdot n}$, showing SSETH is False.
- 2. Middle slice function requires $\Sigma \Pi \Sigma_k$ circuits of size $2^{\Omega(\log(k)/k) \cdot n}$ and $\Sigma \Pi \Sigma$ circuits of size $2^{\Omega(\sqrt{n \log n})}$.

Our Results

Our Results

Theorem

NAE-Enum(3, n/2) can be solved in time $6^{n/4} \approx 1.565^{n}$.

Our Results

Theorem

NAE-Enum(3, n/2) can be solved in time $6^{n/4} \approx 1.565^{n}$.

This is Tight

By construction, NAE-Enum(3, n/2) requires time $\geq 6^{n/4} \approx 1.565^{n}$.

0. Given k-CNF G, let $F(x) = G(x) \land G(\overline{x})$. Every satisfying assignment of F is NAE-satisfying assignment of G and F.

- 0. Given k-CNF G, let $F(x) = G(x) \land G(\overline{x})$. Every satisfying assignment of F is NAE-satisfying assignment of G and F.
- 1. Associate "Transversal Tree" with *F* that captures satisfying assignments of Hamming weight *r* "transversals".

- 0. Given k-CNF G, let $F(x) = G(x) \land G(\overline{x})$. Every satisfying assignment of F is NAE-satisfying assignment of G and F.
- 1. Associate "Transversal Tree" with *F* that captures satisfying assignments of Hamming weight *r* "transversals".
- 2. Randomly prune Transversal Tree s.t. every transversal corresponds to unique leaf.

- 0. Given k-CNF G, let $F(x) = G(x) \land G(\overline{x})$. Every satisfying assignment of F is NAE-satisfying assignment of G and F.
- 1. Associate "Transversal Tree" with *F* that captures satisfying assignments of Hamming weight *r* "transversals".
- 2. Randomly prune Transversal Tree s.t. every transversal corresponds to unique leaf.
- 3. Visit all leaves of this pruned Transversal Tree.

Definition (Transversal Tree)

Definition (Transversal Tree)

Given *k*-CNF *F*:

• If F doesn't contain monotone clause, create leaf node.

Definition (Transversal Tree)

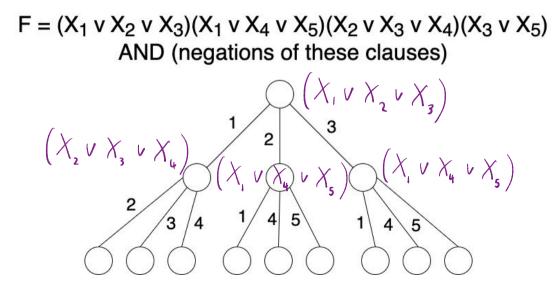
- If *F* doesn't contain monotone clause, create leaf node.
- Else, pick monotone clause C (carefully), and for each $x \in C$:

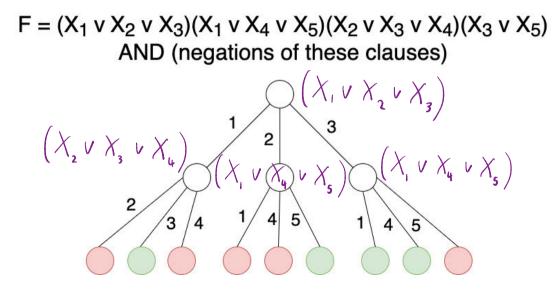
Definition (Transversal Tree)

- If F doesn't contain monotone clause, create leaf node.
- Else, pick monotone clause C (carefully), and for each $x \in C$:
 - 1. Recursively construct tree T_x for $F_{x \leftarrow 1}$

Definition (Transversal Tree)

- If F doesn't contain monotone clause, create leaf node.
- Else, pick monotone clause C (carefully), and for each $x \in C$:
 - 1. Recursively construct tree T_x for $F_{x\leftarrow 1}$
 - 2. Add edge from current node to T_x labelled x.





Transversal Tree Properties

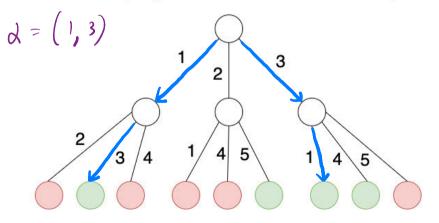
Transversal Tree Properties

Lemma

Every "transversal" of F corresponds to some (maybe many) valid leaves of T.

Transversal Tree Properties

 $F = (X_1 v X_2 v X_3)(X_1 v X_4 v X_5)(X_2 v X_3 v X_4)(X_3 v X_5)$ AND (negations of these clauses)



Visiting all Transversals Once

Visiting all Transversals Once

1. At a node, let outgoing edges be ordered as x_1, \ldots, x_k .

Visiting all Transversals Once

- 1. At a node, let outgoing edges be ordered as x_1, \ldots, x_k .
- **2**. For $1 \le i \le k$:

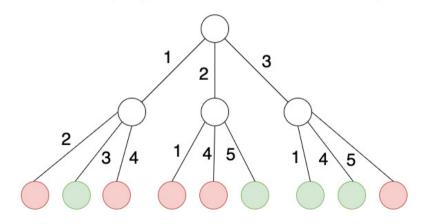
Visiting all Transversals Once

- 1. At a node, let outgoing edges be ordered as x_1, \ldots, x_k .
- **2**. For $1 \le i \le k$:

2.1 Prune (delete) all edges in T_{x_i} labelled with any of x_1, \ldots, x_{i-1} & search T_{x_i} .

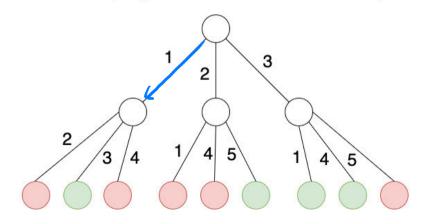
Pruning: Left to Right Ordering

 $F = (X_1 \vee X_2 \vee X_3)(X_1 \vee X_4 \vee X_5)(X_2 \vee X_3 \vee X_4)(X_3 \vee X_5)$ AND (negations of these clauses)



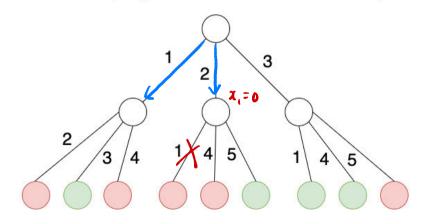
Pruning: Left to Right Ordering

 $F = (X_1 v X_2 v X_3)(X_1 v X_4 v X_5)(X_2 v X_3 v X_4)(X_3 v X_5)$ AND (negations of these clauses)

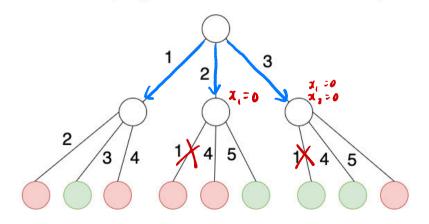


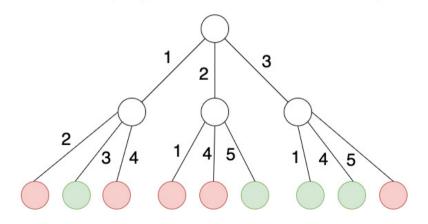
Pruning: Left to Right Ordering

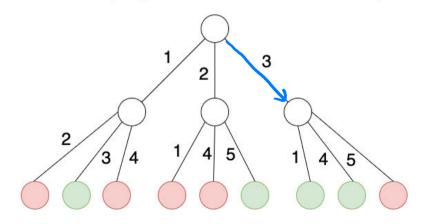
 $F = (X_1 v X_2 v X_3)(X_1 v X_4 v X_5)(X_2 v X_3 v X_4)(X_3 v X_5)$ AND (negations of these clauses)

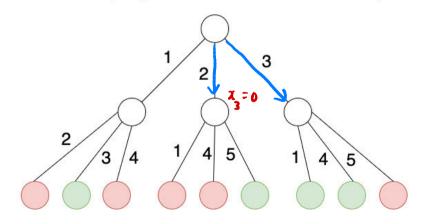


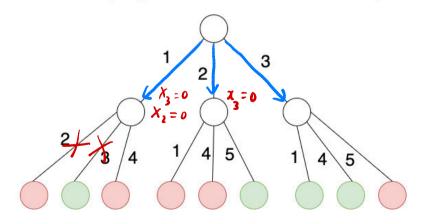
Pruning: Left to Right Ordering











Which Ordering?

Which Ordering?

Canonical Ordering

Same as *k*-SAT algorithm by Monien-Speckenmeyer [Monien-Speckenmeyer'85].

Which Ordering?

Canonical Ordering

Same as *k*-SAT algorithm by Monien-Speckenmeyer [Monien-Speckenmeyer'85].

Previous and This work: Randomized Ordering

Randomize order of outgoing edges at every node.

Survival Probability of Edge

For edge e let $\sigma(e) = \Pr[e \text{ not pruned under randomized ordering}].$

Survival Probability of Edge

For edge e let $\sigma(e) = \Pr[e \text{ not pruned under randomized ordering}].$

Survival Probability of Path

For path *P*: $\sigma(P) = \Pr[\text{all edges on path not pruned under randomized ordering]}.$

Survival Probability of Edge

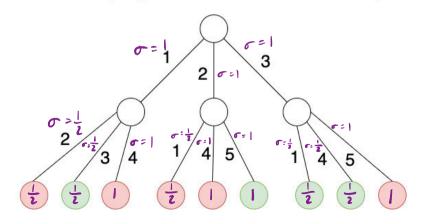
For edge $e | et \sigma(e) = Pr[e \text{ not pruned under randomized ordering}].$

Survival Probability of Path

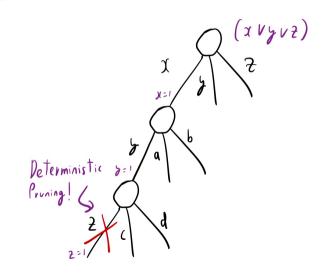
For path *P*: $\sigma(P) = \Pr[\text{all edges on path not pruned under randomized ordering]}.$

Lemma (Expected Runtime of Our Algorithm)

Expected runtime under randomized ordering is $\sigma(T) = \sum_{\ell \in leaf(T)} \sigma(P_{root,\ell})$



Why NAE Helps - Deterministic Pruning



• Use NAE assumption to force deterministic pruning, guaranteeing certain clauses must exist (as well as not exist).

- Use NAE assumption to force deterministic pruning, guaranteeing certain clauses must exist (as well as not exist).
- Use and refine tools from GPPST'24 (NAE assumption simplifies this analysis).

- Use NAE assumption to force deterministic pruning, guaranteeing certain clauses must exist (as well as not exist).
- Use and refine tools from GPPST'24 (NAE assumption simplifies this analysis).
- With careful accounting, conclude

 $\sigma(\mathbf{T}) \leq 6^{\mathbf{n}/4}.$

• Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.

- Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
- Prove that Enum(3, n/2) can be solved in time $6^{n/4}$.

- Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
- Prove that Enum(3, n/2) can be solved in time $6^{n/4}$.
- Prove that in every 3-uniform hypergraph with transversal number n/2, number of transversals of size n/2 is ≤ 6^{n/4}.