
Local Enumeration: The Not-All-Equal Case

Ramamohan Paturi Mohit Gurumukhani Michael Saks Navid Talebanfard
Cornell University University of California,

San Diego
Rutgers University University of Sheffield

Depth 3 Circuits

Depth 3 Circuits
Definition(ΣΠΣ circuits)

• Layers of OR, AND, OR gates.
• Bottom layer connected to input variables.
• Output gate - single OR gate at top.

Depth 3 Circuits
Definition(ΣΠΣ circuits)

• Layers of OR, AND, OR gates.

• Bottom layer connected to input variables.
• Output gate - single OR gate at top.

Depth 3 Circuits
Definition(ΣΠΣ circuits)

• Layers of OR, AND, OR gates.
• Bottom layer connected to input variables.

• Output gate - single OR gate at top.

Depth 3 Circuits
Definition(ΣΠΣ circuits)

• Layers of OR, AND, OR gates.
• Bottom layer connected to input variables.
• Output gate - single OR gate at top.

Depth 3 Circuits

Depth 3 Circuits
Definition(ΣΠΣ circuits)

• Layers of OR, AND, OR gates.
• Bottom layer connected to input variables.
• Output gate - single OR gate at top.

Definition(ΣΠΣk circuits)

ΣΠΣ circuits where bottom layer OR gates have fan in k.

Depth 3 Circuits

Why Depth 3 Circuits?

Strong depth 3 circuit lower bounds imply:

• Super-linear lower bounds for log-depth circuits [Valiant’77].
• Improved (3.9n) general circuit lower bounds [

Golovnev-Kulikov-Williams’21].

Why Depth 3 Circuits?

Strong depth 3 circuit lower bounds imply:
• Super-linear lower bounds for log-depth circuits [Valiant’77].

• Improved (3.9n) general circuit lower bounds [
Golovnev-Kulikov-Williams’21].

Why Depth 3 Circuits?

Strong depth 3 circuit lower bounds imply:
• Super-linear lower bounds for log-depth circuits [Valiant’77].
• Improved (3.9n) general circuit lower bounds [

Golovnev-Kulikov-Williams’21].

Depth 3 Circuit Lower Bounds

Depth 3 Circuit Lower Bounds

• ΣΠΣ Lower bound of 2Ω(
√
n) known for PARITY, BCH code, and MAJORITY

function.

• ΣΠΣk Lower bound of 2Ω(n/k) known for PARITY, BCH code, and MAJORITY
function [Håstad’1986, Paturi-Pudlák-Zane’1999,
Paturi-Pudlák-Saks-Zane’2005, Håstad-Jukna-Pudlák’1995, …].

Depth 3 Circuit Lower Bounds

• ΣΠΣ Lower bound of 2Ω(
√
n) known for PARITY, BCH code, and MAJORITY

function.
• ΣΠΣk Lower bound of 2Ω(n/k) known for PARITY, BCH code, and MAJORITY

function [Håstad’1986, Paturi-Pudlák-Zane’1999,
Paturi-Pudlák-Saks-Zane’2005, Håstad-Jukna-Pudlák’1995, …].

Depth 3 Circuit Lower Bounds

• ΣΠΣ Lower bound of 2Ω(
√
n) known for PARITY, BCH code, and MAJORITY

function.
• ΣΠΣk Lower bound of 2Ω(n/k) known for PARITY, BCH code, and MAJORITY

function [Håstad’1986, Paturi-Pudlák-Zane’1999,
Paturi-Pudlák-Saks-Zane’2005, Håstad-Jukna-Pudlák’1995, …].

Upper bounds for MAJORITY

• Can construct ΣΠΣ circuit for MAJORITY of size 2O(
√
n log n).

• Can construct ΣΠΣk circuit for MAJORITY of size 2O(log(k)/k)·n.

Depth 3 Circuit Lower Bounds

• ΣΠΣ Lower bound of 2Ω(
√
n) known for PARITY, BCH code, and MAJORITY

function.
• ΣΠΣk Lower bound of 2Ω(n/k) known for PARITY, BCH code, and MAJORITY

function [Håstad’1986, Paturi-Pudlák-Zane’1999,
Paturi-Pudlák-Saks-Zane’2005, Håstad-Jukna-Pudlák’1995, …].

Upper bounds for MAJORITY

• Can construct ΣΠΣ circuit for MAJORITY of size 2O(
√
n log n).

• Can construct ΣΠΣk circuit for MAJORITY of size 2O(log(k)/k)·n.

Depth 3 Circuit Lower Bounds

• ΣΠΣ Lower bound of 2Ω(
√
n) known for PARITY, BCH code, and MAJORITY

function.
• ΣΠΣk Lower bound of 2Ω(n/k) known for PARITY, BCH code, and MAJORITY

function [Håstad’1986, Paturi-Pudlák-Zane’1999,
Paturi-Pudlák-Saks-Zane’2005, Håstad-Jukna-Pudlák’1995, …].

Upper bounds for MAJORITY

• Can construct ΣΠΣ circuit for MAJORITY of size 2O(
√
n log n).

• Can construct ΣΠΣk circuit for MAJORITY of size 2O(log(k)/k)·n.

k-SAT

k-SAT
Definition (k-SAT)

Given k-CNF F, decide if it is satisfiable.

k-SAT
Definition (k-SAT)

Given k-CNF F, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time 2n−O(n/k). [
Paturi-Pudlák-Zane’1999, Schöning’1999, Paturi-Pudlák-Saks-Zane’2005,
Chan-Williams’2019, Brakensiek-Guruswami’2019, …]

k-SAT
Definition (k-SAT)

Given k-CNF F, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time 2n−O(n/k). [
Paturi-Pudlák-Zane’1999, Schöning’1999, Paturi-Pudlák-Saks-Zane’2005,
Chan-Williams’2019, Brakensiek-Guruswami’2019, …]

Super Strong Exponential Time Hypothesis (SSETH)

There does not exist a 2n−ω(n/k) time algorithm to solve k-SAT [
Vyas-Williams’21].

Enum(k, r)

Enum(k, r)
Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and r ≥ 0, s.t. every satisfying assignment of F has
Hamming weight≥ r, output all satisfying assignments of Hamming weight r.

Enum(k, r)
Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and r ≥ 0, s.t. every satisfying assignment of F has
Hamming weight≥ r, output all satisfying assignments of Hamming weight r.

Lower Bound via Construction

• Can construct k-CNF with 2n−O(log(k)/k)·n satisfying assignments of
Hamming weight n/2 and no satisfying assignments of Hamming weight
< n/2.

• Enum(k, n/2) ≥ 2n−O(log(k)/k)·n.

Enum(k, r)
Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and r ≥ 0, s.t. every satisfying assignment of F has
Hamming weight≥ r, output all satisfying assignments of Hamming weight r.

Lower Bound via Construction
• Can construct k-CNF with 2n−O(log(k)/k)·n satisfying assignments of

Hamming weight n/2 and no satisfying assignments of Hamming weight
< n/2.

• Enum(k, n/2) ≥ 2n−O(log(k)/k)·n.

Enum(k, r)
Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF F and r ≥ 0, s.t. every satisfying assignment of F has
Hamming weight≥ r, output all satisfying assignments of Hamming weight r.

Lower Bound via Construction
• Can construct k-CNF with 2n−O(log(k)/k)·n satisfying assignments of

Hamming weight n/2 and no satisfying assignments of Hamming weight
< n/2.

• Enum(k, n/2) ≥ 2n−O(log(k)/k)·n.

Local Enumeration Applications
Lemma
If Enum(k, r) can be solved in time T(r):

1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires ΣΠΣk circuits of size 2n/T(n/2).

Local Enumeration Applications
Lemma
If Enum(k, r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).

2. MAJORITY requires ΣΠΣk circuits of size 2n/T(n/2).

Local Enumeration Applications
Lemma
If Enum(k, r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires ΣΠΣk circuits of size 2n/T(n/2).

Local Enumeration Applications
Lemma
If Enum(k, r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires ΣΠΣk circuits of size 2n/T(n/2).

Corollary

If Enum(k, n/2) ≤ 2n−O(log(k)/k)·n:

1. Can solve k-SAT in time 2n−O(log(k)/k)·n, showing SSETH is False.
2. MAJORITY requires ΣΠΣk circuits of size 2Ω(log(k)/k)·n and ΣΠΣ circuits of

size 2Ω(
√
n log n).

Local Enumeration Applications
Lemma
If Enum(k, r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires ΣΠΣk circuits of size 2n/T(n/2).

Corollary

If Enum(k, n/2) ≤ 2n−O(log(k)/k)·n:
1. Can solve k-SAT in time 2n−O(log(k)/k)·n, showing SSETH is False.

2. MAJORITY requires ΣΠΣk circuits of size 2Ω(log(k)/k)·n and ΣΠΣ circuits of
size 2Ω(

√
n log n).

Local Enumeration Applications
Lemma
If Enum(k, r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires ΣΠΣk circuits of size 2n/T(n/2).

Corollary

If Enum(k, n/2) ≤ 2n−O(log(k)/k)·n:
1. Can solve k-SAT in time 2n−O(log(k)/k)·n, showing SSETH is False.
2. MAJORITY requires ΣΠΣk circuits of size 2Ω(log(k)/k)·n and ΣΠΣ circuits of

size 2Ω(
√
n log n).

Previous Work
G-Paturi-Pudlák-Saks-Talebanfard’2024

• Enum(3, n/2) can be solved in time 1.598n.
• MAJORITY requires ΣΠΣ3 circuits of size≥ 1.251n.

Previous Work
G-Paturi-Pudlák-Saks-Talebanfard’2024

• Enum(3, n/2) can be solved in time 1.598n.

• MAJORITY requires ΣΠΣ3 circuits of size≥ 1.251n.

Previous Work
G-Paturi-Pudlák-Saks-Talebanfard’2024

• Enum(3, n/2) can be solved in time 1.598n.
• MAJORITY requires ΣΠΣ3 circuits of size≥ 1.251n.

Previous Work
G-Paturi-Pudlák-Saks-Talebanfard’2024

• Enum(3, n/2) can be solved in time 1.598n.
• MAJORITY requires ΣΠΣ3 circuits of size≥ 1.251n.

This is Not Tight

By construction, Enum(3, n/2) requires time≥ 6n/4 ≈ 1.565n.

NAE Case

NAE Case
Definition (Not-All-Equal solution)

For k-CNF F, α is NAE solution if both α and α satisfy F.

NAE Case
Definition (Not-All-Equal solution)

For k-CNF F, α is NAE solution if both α and α satisfy F.

Definition (NAE Local Enumeration)

NAE-Enum(k, r): Given k-CNF F and r ≥ 0, s.t. every NAE satisfying assignment
of F has Hamming weight≥ r, output all NAE satisfying assignments of
Hamming weight r.

NAE Local Enumeration Applications
Lemma
If NAE-Enum(k, r) can be solved in time T(r):

1. (k− 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires ΣΠΣk−1 circuits of size 2n/T(n/2).

NAE Local Enumeration Applications
Lemma
If NAE-Enum(k, r) can be solved in time T(r):
1. (k− 1)-SAT can be solved in time T(n/2).

2. Middle slice function requires ΣΠΣk−1 circuits of size 2n/T(n/2).

NAE Local Enumeration Applications
Lemma
If NAE-Enum(k, r) can be solved in time T(r):
1. (k− 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires ΣΠΣk−1 circuits of size 2n/T(n/2).

NAE Local Enumeration Applications
Lemma
If NAE-Enum(k, r) can be solved in time T(r):
1. (k− 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires ΣΠΣk−1 circuits of size 2n/T(n/2).

Corollary

If NAE-Enum(k, n/2) ≤ 2n−O(log(k)/k)·n:

1. Can solve k-SAT in time 2n−O(log(k)/k)·n, showing SSETH is False.
2. Middle slice function requires ΣΠΣk circuits of size 2Ω(log(k)/k)·n and

ΣΠΣ circuits of size 2Ω(
√
n log n).

NAE Local Enumeration Applications
Lemma
If NAE-Enum(k, r) can be solved in time T(r):
1. (k− 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires ΣΠΣk−1 circuits of size 2n/T(n/2).

Corollary

If NAE-Enum(k, n/2) ≤ 2n−O(log(k)/k)·n:
1. Can solve k-SAT in time 2n−O(log(k)/k)·n, showing SSETH is False.

2. Middle slice function requires ΣΠΣk circuits of size 2Ω(log(k)/k)·n and
ΣΠΣ circuits of size 2Ω(

√
n log n).

NAE Local Enumeration Applications
Lemma
If NAE-Enum(k, r) can be solved in time T(r):
1. (k− 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires ΣΠΣk−1 circuits of size 2n/T(n/2).

Corollary

If NAE-Enum(k, n/2) ≤ 2n−O(log(k)/k)·n:
1. Can solve k-SAT in time 2n−O(log(k)/k)·n, showing SSETH is False.
2. Middle slice function requires ΣΠΣk circuits of size 2Ω(log(k)/k)·n and

ΣΠΣ circuits of size 2Ω(
√
n log n).

Our Results

Our Results
Theorem
NAE-Enum(3, n/2) can be solved in time 6n/4 ≈ 1.565n.

Our Results
Theorem
NAE-Enum(3, n/2) can be solved in time 6n/4 ≈ 1.565n.

This is Tight

By construction, NAE-Enum(3, n/2) requires time≥ 6n/4 ≈ 1.565n.

Solving NAE-Enum(k, r)

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) ∧ G(x). Every satisfying assignment of F is
NAE-satisfying assignment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

3. Visit all leaves of this pruned Transversal Tree.

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) ∧ G(x). Every satisfying assignment of F is
NAE-satisfying assignment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

3. Visit all leaves of this pruned Transversal Tree.

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) ∧ G(x). Every satisfying assignment of F is
NAE-satisfying assignment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

3. Visit all leaves of this pruned Transversal Tree.

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) ∧ G(x). Every satisfying assignment of F is
NAE-satisfying assignment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

3. Visit all leaves of this pruned Transversal Tree.

Transversal Tree

Transversal Tree
Definition (Transversal Tree)

Given k-CNF F:

• If F doesn’t contain monotone clause, create leaf node.
• Else, pick monotone clause C (carefully), and for each x ∈ C:

1. Recursively construct tree Tx for Fx←1

2. Add edge from current node to Tx labelled x.

Transversal Tree
Definition (Transversal Tree)

Given k-CNF F:
• If F doesn’t contain monotone clause, create leaf node.

• Else, pick monotone clause C (carefully), and for each x ∈ C:

1. Recursively construct tree Tx for Fx←1

2. Add edge from current node to Tx labelled x.

Transversal Tree
Definition (Transversal Tree)

Given k-CNF F:
• If F doesn’t contain monotone clause, create leaf node.
• Else, pick monotone clause C (carefully), and for each x ∈ C:

1. Recursively construct tree Tx for Fx←1

2. Add edge from current node to Tx labelled x.

Transversal Tree
Definition (Transversal Tree)

Given k-CNF F:
• If F doesn’t contain monotone clause, create leaf node.
• Else, pick monotone clause C (carefully), and for each x ∈ C:

1. Recursively construct tree Tx for Fx←1

2. Add edge from current node to Tx labelled x.

Transversal Tree
Definition (Transversal Tree)

Given k-CNF F:
• If F doesn’t contain monotone clause, create leaf node.
• Else, pick monotone clause C (carefully), and for each x ∈ C:

1. Recursively construct tree Tx for Fx←1

2. Add edge from current node to Tx labelled x.

Transversal Tree

(X ,
rX
,
-X
,)

1
,
rX

, Xx) (X
,
rx
, X) (,

rX
, X)

Transversal Tree

(X ,
rX
,
-X
,)

1
,
rX

, Xx) (X
,
rx
, X) (,

rX
, X)

Transversal Tree Properties

Transversal Tree Properties
Lemma
Every “transversal” of F corresponds to some (maybe many) valid leaves of T.

Transversal Tree Properties

2 = (1, 3)

-X
1 ↓

Pruning Transversal Tree
Visiting all Transversals Once

1. At a node, let outgoing edges be ordered as x1, . . . , xk.
2. For 1 ≤ i ≤ k:

2.1 Prune (delete) all edges in Txi labelled with any of x1, . . . , xi−1 & search Txi .

Pruning Transversal Tree
Visiting all Transversals Once

1. At a node, let outgoing edges be ordered as x1, . . . , xk.

2. For 1 ≤ i ≤ k:

2.1 Prune (delete) all edges in Txi labelled with any of x1, . . . , xi−1 & search Txi .

Pruning Transversal Tree
Visiting all Transversals Once

1. At a node, let outgoing edges be ordered as x1, . . . , xk.
2. For 1 ≤ i ≤ k:

2.1 Prune (delete) all edges in Txi labelled with any of x1, . . . , xi−1 & search Txi .

Pruning Transversal Tree
Visiting all Transversals Once

1. At a node, let outgoing edges be ordered as x1, . . . , xk.
2. For 1 ≤ i ≤ k:

2.1 Prune (delete) all edges in Txi labelled with any of x1, . . . , xi−1 & search Txi .

Pruning: Left to Right Ordering

Pruning: Left to Right Ordering

-

Pruning: Left to Right Ordering

ta
,
o

X

Pruning: Left to Right Ordering

↓
X X

Pruning: Right to Left Ordering

Pruning: Right to Left Ordering

↳

Pruning: Right to Left Ordering

↓

Pruning: Right to Left Ordering

-sti

Which Ordering?

Which Ordering?
Canonical Ordering

Same as k-SAT algorithm by Monien-Speckenmeyer [
Monien-Speckenmeyer’85].

Which Ordering?
Canonical Ordering

Same as k-SAT algorithm by Monien-Speckenmeyer [
Monien-Speckenmeyer’85].

Previous and This work: Randomized Ordering

Randomize order of outgoing edges at every node.

Survival Probability

Survival Probability
Survival Probability of Edge

For edge e let σ(e) = Pr[e not pruned under randomized ordering].

Survival Probability
Survival Probability of Edge

For edge e let σ(e) = Pr[e not pruned under randomized ordering].

Survival Probability of Path

For path P:
σ(P) = Pr[all edges on path not pruned under randomized ordering].

Survival Probability
Survival Probability of Edge

For edge e let σ(e) = Pr[e not pruned under randomized ordering].

Survival Probability of Path

For path P:
σ(P) = Pr[all edges on path not pruned under randomized ordering].

Lemma (Expected Runtime of Our Algorithm)

Expected runtime under randomized ordering is σ(T) =
∑

ℓ∈leaf (T) σ(Proot,ℓ)

Survival Probability

-= 1 u = 1

0 = 1

o =! u = 1

2 -= Nitril Ned
wit ritU=

↳ 1 I 1
1 I t t 1Z I

Why NAE Helps - Deterministic Pruning

Remaining Analysis

• Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

• Use and refine tools from GPPST’24 (NAE assumption simplifies this
analysis).

• With careful accounting, conclude

σ(T) ≤ 6n/4.

Remaining Analysis

• Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

• Use and refine tools from GPPST’24 (NAE assumption simplifies this
analysis).

• With careful accounting, conclude

σ(T) ≤ 6n/4.

Remaining Analysis

• Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

• Use and refine tools from GPPST’24 (NAE assumption simplifies this
analysis).

• With careful accounting, conclude

σ(T) ≤ 6n/4.

Remaining Analysis

• Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

• Use and refine tools from GPPST’24 (NAE assumption simplifies this
analysis).

• With careful accounting, conclude

σ(T) ≤ 6n/4.

Open Questions

Open Questions

• Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.

• Prove that Enum(3, n/2) can be solved in time 6n/4.
• Prove that in every 3-uniform hypergraph with transversal number n/2,

number of transversals of size n/2 is≤ 6n/4.

Open Questions

• Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
• Prove that Enum(3, n/2) can be solved in time 6n/4.

• Prove that in every 3-uniform hypergraph with transversal number n/2,
number of transversals of size n/2 is≤ 6n/4.

Open Questions

• Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
• Prove that Enum(3, n/2) can be solved in time 6n/4.
• Prove that in every 3-uniform hypergraph with transversal number n/2,

number of transversals of size n/2 is≤ 6n/4.

