Local Enumeration: The Not-All-Equal Case

'

&g Al
Mohit Gurumukhani Ramamohan Paturi Michael Saks Navid Talebanfard
Cornell University University of California, Rutgers University University of Sheffield

San Diego

Depth 3 Circuits

Depth 3 Circuits

Definition(X11X circuits)

Depth 3 Circuits

Definition(X11X circuits)

e Layers of OR, AND, OR gates.

Depth 3 Circuits

Definition(X11X circuits)

e Layers of OR, AND, OR gates.
® Bottom layer connected to input variables.

Depth 3 Circuits
Definition(X11X circuits)

e Layers of OR, AND, OR gates.
® Bottom layer connected to input variables.
® Qutput gate - single OR gate at top.

Depth 3 Circuits

Depth 3 Circuits

Definition(X11X circuits)

e Layers of OR, AND, OR gates.
® Bottom layer connected to input variables.
® Qutput gate - single OR gate at top.

Definition(XIIX, circuits)

Y113 circuits where bottom layer OR gates have fan in k.

Depth 3 Circuits

Why Depth 3 Circuits?

|
Strong depth 3 circuit lower bounds imply:

Why Depth 3 Circuits?

|
Strong depth 3 circuit lower bounds imply:

® Super-linear lower bounds for log-depth circuits [Valiant’77].

Why Depth 3 Circuits?

|
Strong depth 3 circuit lower bounds imply:

® Super-linear lower bounds for log-depth circuits [Valiant’77].

® Improved (3.9n) general circuit lower bounds [
Golovnev-Kulikov-Williams’21].

Depth 3 Circuit Lower Bounds

Depth 3 Circuit Lower Bounds

e YIIY Lower bound of 22" known for PARITY, BCH code, and MAJORITY
function.

Depth 3 Circuit Lower Bounds

|
e YIIY Lower bound of 22" known for PARITY, BCH code, and MAJORITY
function.
e YIIX, Lower bound of 222"/ known for PARITY, BCH code, and MAJORITY
function [Hastad'1986, Paturi-Pudlak-Zane’1999,
Paturi-Pudlak-Saks-Zane'2005, Hastad-Jukna-Pudlak’1995, ...].

Depth 3 Circuit Lower Bounds

e XIIX Lower bound of 22V known for PARITY, BCH code, and MAJORITY
function.

e YIIX, Lower bound of 222"/ known for PARITY, BCH code, and MAJORITY
function [Hastad’1986, Paturi-Pudlak-Zane'1999,
Paturi-Pudléak-Saks-Zane'2005, Hastad-Jukna-Pudlak’1995, ...].

Upper bounds for MAJORITY

Depth 3 Circuit Lower Bounds

e YIIY Lower bound of 22" known for PARITY, BCH code, and MAJORITY
function.

e YIIX, Lower bound of 222"/ known for PARITY, BCH code, and MAJORITY
function [Hastad’1986, Paturi-Pudlak-Zane'1999,
Paturi-Pudléak-Saks-Zane'2005, Hastad-Jukna-Pudlak’1995, ...].

Upper bounds for MAJORITY

e Can construct XIIX. circuit for MAJORITY of size 20(vnlogn)

Depth 3 Circuit Lower Bounds

e YIIY Lower bound of 22" known for PARITY, BCH code, and MAJORITY
function.

e YIIX, Lower bound of 222"/ known for PARITY, BCH code, and MAJORITY
function [Hastad’1986, Paturi-Pudlak-Zane'1999,
Paturi-Pudléak-Saks-Zane'2005, Hastad-Jukna-Pudlak’1995, ...].

Upper bounds for MAJORITY

e Can construct ZIIY circuit for MAJORITY of size 20(v/nlogn)
e Can construct XIIY, circuit for MAJORITY of size 20(es(k)/k)-n,

k-SAT

k-SAT
Definition (k-SAT)
Given k-CNF F, decide if it is satisfiable.

k-SAT
Definition (k-SAT)
Given k-CNF F, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time 2"—°/k [
Paturi-Pudlak-Zane’'1999, Schoning'1999, Paturi-Pudlék-Saks-Zane’2005,
Chan-Williams’2019, Brakensiek-Guruswami’2019, ...]

k-SAT
Definition (k-SAT)
Given k-CNF F, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time 2"—°/k [
Paturi-Pudlak-Zane’'1999, Schoning'1999, Paturi-Pudlék-Saks-Zane’2005,
Chan-Williams’2019, Brakensiek-Guruswami’2019, ...]

Super Strong Exponential Time Hypothesis (SSETH)

There does not exist a 2"~(/k) time algorithm to solve k-SAT [
Vyas-Williams’21].

Enum(k, r)

Enum(k, r)

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF Fand r > 0, s.t. every satisfying assignment of F has
Hamming weight > r, output all satisfying assignments of Hamming weight r.

Enum(k, r)

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF Fand r > 0, s.t. every satisfying assignment of F has
Hamming weight > r, output all satisfying assignments of Hamming weight r.

Lower Bound via Construction

Enum(k, r)

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF Fand r > 0, s.t. every satisfying assignhment of F has
Hamming weight > r, output all satisfying assighments of Hamming weight r.

Lower Bound via Construction

e Can construct k-CNF with 27—20ee(k)/k)-n satisfying assignments of
Hamming weight n/2 and no satisfying assighments of Hamming weight
<n/2.

Enum(k, r)

Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF Fand r > 0, s.t. every satisfying assignhment of F has
Hamming weight > r, output all satisfying assighments of Hamming weight r.

Lower Bound via Construction

e Can construct k-CNF with 27—20ee(k)/k)-n satisfying assignments of
Hamming weight n/2 and no satisfying assighments of Hamming weight
<n/2.

e Enum(k,n/2) > 2n—00esk)/k)-n,

Local Enumeration Applications

Lemma

If Enum(k,r) can be solved in time T(r):

Local Enumeration Applications

Lemma

If Enum(k,r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).

Local Enumeration Applications

Lemma

If Enum(k,r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires X115 circuits of size 2" /T(n/2).

Local Enumeration Applications

Lemma

If Enum(k,r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires X115 circuits of size 2" /T(n/2).

Corollary

If Enum(k,n/2) < 2n—0Ueek)/k)-n.

Local Enumeration Applications

Lemma

If Enum(k,r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires X115 circuits of size 2" /T(n/2).

Corollary

If Enum(k,n/2) < 2n—0Ueek)/k)-n.
1. Can solve k-SAT in time 2n—00eet)/k)-n showing SSETH is False.

Local Enumeration Applications

Lemma
If Enum(k,r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires X115 circuits of size 2" /T(n/2).

Corollary

If Enum(k,n/2) < 2n—0Ueek)/k)-n.
1. Can solve k-SAT in time 2n—00eet)/k)-n showing SSETH is False.

2. MAJORITY requires Y115 circuits of size 22es(K)/k)n gnd SI1Y circuits of
size 29(vnlogn)

Previous Work

G-Paturi-Pudlak-Saks-Talebanfard’2024

Previous Work

G-Paturi-Pudlak-Saks-Talebanfard’2024

e Enum(3,n/2) can be solved in time 1.598".

Previous Work

G-Paturi-Pudlak-Saks-Talebanfard’2024

e Enum(3,n/2) can be solved in time 1.598".
® MAJORITY requires Y1135 circuits of size > 1.251".

Previous Work

G-Paturi-Pudlak-Saks-Talebanfard’2024

e Enum(3,n/2) can be solved in time 1.598".
® MAJORITY requires Y1135 circuits of size > 1.251".

This is Not Tight

By construction, Enum(3,n/2) requires time > 6"/4 ~ 1.565".

NAE Case

NAE Case

Definition (Not-All-Equal solution)

For k-CNF F, o is NAE solution if both o and @ satisfy F.

NAE Case
Definition (Not-All-Equal solution)

For k-CNF F, o is NAE solution if both o and @ satisfy F.

Definition (NAE Local Enumeration)

NAE-Enum(k, r): Given k-CNF Fand r > 0, s.t. every NAE satisfying assignment
of F has Hamming weight > r, output all NAE satisfying assignments of
Hamming weight r.

NAE Local Enumeration Applications

Lemma

If NAE-Enum(k, r) can be solved in time T(r):

NAE Local Enumeration Applications

Lemma

If NAE-Enum(k, r) can be solved in time T(r):
1. (k — 1)-SAT can be solved in time T(n/2).

NAE Local Enumeration Applications

Lemma

If NAE-Enum(k, r) can be solved in time T(r):
1. (k — 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires X115 _; circuits of size 2" /T(n/2).

NAE Local Enumeration Applications

Lemma

If NAE-Enum(k, r) can be solved in time T(r):
1. (k — 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires X115 _; circuits of size 2" /T(n/2).

Corollary

If NAE-Enum(k,n/2) < 2n—0Cog(k)/k)-n.

NAE Local Enumeration Applications

Lemma

If NAE-Enum(k, r) can be solved in time T(r):
1. (k — 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires X115 _; circuits of size 2" /T(n/2).

Corollary

If NAE-Enum(k, n/2) < 2n—0og(k)/k)-n.
1. Can solve k-SAT in time 2n—°0ek)/k)-n showing SSETH is False.

NAE Local Enumeration Applications

Lemma
If NAE-Enum(k, r) can be solved in time T(r):
1. (k — 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires X115 _; circuits of size 2" /T(n/2).

Corollary
If NAE-Enum(k, n/2) < 2n—0og(k)/k)-n.
1. Can solve k-SAT in time 2n—°0ek)/k)-n showing SSETH is False.

2. Middle slice function requires YI1Y circuits of size 2t(ek)/k):n gnd
YIIY circuits of size 2(vnlogn),

Our Results

Our Results

NAE-Enum(3,n/2) can be solved in time 6"/* ~ 1.565".

Our Results

NAE-Enum(3,n/2) can be solved in time 6"/* ~ 1.565".

This is Tight

By construction, NAE-Enum(3, n/2) requires time > 6"/4 ~ 1.565".

Solving NAE-Enum(k, r)

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) A G(X). Every satisfying assignment of Fis
NAE-satisfying assignment of G and F.

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) A G(X). Every satisfying assignment of Fis
NAE-satisfying assighment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) A G(X). Every satisfying assignment of Fis
NAE-satisfying assighment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) A G(X). Every satisfying assignment of Fis
NAE-satisfying assighment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

3. Visit all leaves of this pruned Transversal Tree.

Transversal Tree

Transversal Tree

Definition (Transversal Tree)

Given k-CNF F:

Transversal Tree

Definition (Transversal Tree)

Given k-CNF F:
e |f Fdoesn’t contain monotone clause, create leaf node.

Transversal Tree

Definition (Transversal Tree)

Given k-CNF F:
e |f Fdoesn’t contain monotone clause, create leaf node.
¢ Else, pick monotone clause C (carefully), and for each x € C:

Transversal Tree

Definition (Transversal Tree)

Given k-CNF F:
e |f Fdoesn’t contain monotone clause, create leaf node.

¢ Else, pick monotone clause C (carefully), and for each x € C:
1. Recursively construct tree T, for Fy. 1

Transversal Tree

Definition (Transversal Tree)

Given k-CNF F:
e |f Fdoesn’t contain monotone clause, create leaf node.

¢ Else, pick monotone clause C (carefully), and for each x € C:

1. Recursively construct tree T, for Fy. 1
2. Add edge from current node to T, labelled x.

Transversal Tree

F = (X1 vXav X3)(X1VXgV Xs)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)

Transversal Tree

F = (X1 vXav X3)(X1VXgV Xs)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)

(X‘ v X'z v Xg)

3

Transversal Tree Properties

Transversal Tree Properties

Lemma

Every “transversal” of F corresponds to some (maybe many) valid leaves of T.

Transversal Tree Properties

F = (X1 VX2V X3)(X1VXqV Xs)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)

Pruning Transversal Tree

Visiting all Transversals Once

Pruning Transversal Tree

Visiting all Transversals Once

1. At anode, let outgoing edges be ordered as x1, . .., x.

Pruning Transversal Tree

Visiting all Transversals Once

1. At anode, let outgoing edges be ordered as x1, . .., x.
2. Forl <i<k:

Pruning Transversal Tree

Visiting all Transversals Once

1. At anode, let outgoing edges be ordered as x1, . .., x.
2. Forl <i<k:
2.1 Prune (delete) all edges in T, labelled with any of x1,...,x;—1 & search Tj,.

Pruning: Left to Right Ordering

F = (X1 vXov X3)(X1VvXsVXs)(Xov X3V Xg)(X3 V Xs)
AND (negations of these clauses)

Pruning: Left to Right Ordering

F=(X1vXav X3)(X1VXqV Xs)(X2V X3V Xg)(X3 Vv Xs)
AND (negations of these clauses)

Pruning: Left to Right Ordering

F=(X1vXav X3)(X1VXqV Xs)(X2V X3V Xg)(X3 Vv Xs)
AND (negations of these clauses)

Pruning: Left to Right Ordering

F=(X1vXav X3)(X1VXqV Xs)(X2V X3V Xg)(X3 Vv Xs)
AND (negations of these clauses)

Pruning: Right to Left Ordering

F = (X1 vXov X3)(X1VvXsVXs)(Xov X3V Xg)(X3 V Xs)
AND (negations of these clauses)

Pruning: Right to Left Ordering

F=(X1vXav X3)(X1VXqV Xs)(X2V X3V Xg)(X3 Vv Xs)
AND (negations of these clauses)

Pruning: Right to Left Ordering

F=(X1vXav X3)(X1VXqV Xs)(X2V X3V Xg)(X3 Vv Xs)
AND (negations of these clauses)

Pruning: Right to Left Ordering

F=(X1vXav X3)(X1VXqV Xs)(X2V X3V Xg)(X3 Vv Xs)
AND (negations of these clauses)

Which Ordering?

Which Ordering?

Canonical Ordering

Same as k-SAT algorithm by Monien-Speckenmeyer [
Monien-Speckenmeyer’85].

Which Ordering?

Canonical Ordering

Same as k-SAT algorithm by Monien-Speckenmeyer [
Monien-Speckenmeyer’85].

Previous and This work: Randomized Ordering

Randomize order of outgoing edges at every node.

Survival Probability

Survival Probability

Survival Probability of Edge

For edge e let o(e) = Pr[e not pruned under randomized ordering].

Survival Probability

Survival Probability of Edge

For edge e let o(e) = Pr[e not pruned under randomized ordering].

Survival Probability of Path

For path P:
o(P) = Prlall edges on path not pruned under randomized ordering].

Survival Probability

Survival Probability of Edge

For edge e let o(e) = Pr[e not pruned under randomized ordering].

Survival Probability of Path

For path P:
o(P) = Prlall edges on path not pruned under randomized ordering].

Lemma (Expected Runtime of Our Algorithm)

Expected runtime under randomized ordering is o(T) = 3_ o1 0 (Proot.c)

Survival Probability

F = (X1Vv X2V X3)(X1VXgqVXs5)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)

Why NAE Helps - Deterministic Pruning

Remaining Analysis
|

Remaining Analysis

e Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

Remaining Analysis

® Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

e Use and refine tools from GPPST'24 (NAE assumption simplifies this
analysis).

Remaining Analysis

® Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

e Use and refine tools from GPPST'24 (NAE assumption simplifies this
analysis).
® With careful accounting, conclude

o(T) < 64,

Open Questions

Open Questions

L
® Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.

Open Questions

L
® Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
* Prove that Enum(3,n/2) can be solved in time 6"/4.

Open Questions

L
® Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
* Prove that Enum(3,n/2) can be solved in time 6"/4.

® Prove that in every 3-uniform hypergraph with transversal number n/2,
number of transversals of size n/2 is < 6"/4,

