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Depth 3 Circuits
Definition(ΣΠΣ circuits)

• Layers of OR, AND, OR gates.
• Bottom layer connected to input variables.
• Output gate - single OR gate at top.

Definition(ΣΠΣk circuits)

ΣΠΣ circuits where bottom layer OR gates have fan in k.
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Definition (k-SAT)

Given k-CNF F, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time 2n−O(n/k). [
Paturi-Pudlák-Zane’1999, Schöning’1999, Paturi-Pudlák-Saks-Zane’2005,
Chan-Williams’2019, Brakensiek-Guruswami’2019, … ]

Super Strong Exponential Time Hypothesis (SSETH)

There does not exist a 2n−ω(n/k) time algorithm to solve k-SAT [
Vyas-Williams’21 ].
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G-Paturi-Pudlák-Saks-Talebanfard’2024

• Enum(3, n/2) can be solved in time 1.598n.
• MAJORITY requires ΣΠΣ3 circuits of size≥ 1.251n.

This is Not Tight

By construction, Enum(3, n/2) requires time≥ 6n/4 ≈ 1.565n.
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Previous and This work: Randomized Ordering

Randomize order of outgoing edges at every node.
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For path P:
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Lemma (Expected Runtime of Our Algorithm)

Expected runtime under randomized ordering is σ(T) =
∑

ℓ∈leaf (T) σ(Proot,ℓ)
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