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Definition(X11X circuits)

e Layers of OR, AND, OR gates.
® Bottom layer connected to input variables.
® Qutput gate - single OR gate at top.

Definition(XIIX, circuits)

Y113 circuits where bottom layer OR gates have fan in k.
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|
Strong depth 3 circuit lower bounds imply:

® Super-linear lower bounds for log-depth circuits [ Valiant’77 ].

® Improved (3.9n) general circuit lower bounds [
Golovnev-Kulikov-Williams’21 ].
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e YIIY Lower bound of 22" known for PARITY, BCH code, and MAJORITY
function.

e YIIX, Lower bound of 222"/ known for PARITY, BCH code, and MAJORITY
function [ Hastad’1986, Paturi-Pudlak-Zane'1999,
Paturi-Pudléak-Saks-Zane'2005, Hastad-Jukna-Pudlak’1995, ... ].

Upper bounds for MAJORITY

e Can construct ZIIY circuit for MAJORITY of size 20(v/nlogn)
e Can construct XIIY, circuit for MAJORITY of size 20(es(k)/k)-n,
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Definition (k-SAT)
Given k-CNF F, decide if it is satisfiable.

Current best algorithms

Algorithms using various techniques, all running in time 2"—°/k [
Paturi-Pudlak-Zane’'1999, Schoning'1999, Paturi-Pudlék-Saks-Zane’2005,
Chan-Williams’2019, Brakensiek-Guruswami’2019, ... ]

Super Strong Exponential Time Hypothesis (SSETH)

There does not exist a 2"~(/k) time algorithm to solve k-SAT [
Vyas-Williams’21 ].
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Definition (Local Enumeration Problem)

Enum(k, r): Given k-CNF Fand r > 0, s.t. every satisfying assignhment of F has
Hamming weight > r, output all satisfying assighments of Hamming weight r.

Lower Bound via Construction

e Can construct k-CNF with 27—20ee(k)/k)-n satisfying assignments of
Hamming weight n/2 and no satisfying assighments of Hamming weight
<n/2.

e Enum(k,n/2) > 2n—00esk)/k)-n,
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Local Enumeration Applications

Lemma
If Enum(k,r) can be solved in time T(r):
1. k-SAT can be solved in time T(n/2).
2. MAJORITY requires X115 circuits of size 2" /T(n/2).

Corollary

If Enum(k,n/2) < 2n—0Ueek)/k)-n.
1. Can solve k-SAT in time 2n—00eet)/k)-n showing SSETH is False.

2. MAJORITY requires Y115 circuits of size 22es(K)/k)n gnd SI1Y circuits of
size 29(vnlogn)
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Previous Work

G-Paturi-Pudlak-Saks-Talebanfard’2024

e Enum(3,n/2) can be solved in time 1.598".
® MAJORITY requires Y1135 circuits of size > 1.251".

This is Not Tight

By construction, Enum(3,n/2) requires time > 6"/4 ~ 1.565".
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Definition (Not-All-Equal solution)

For k-CNF F, o is NAE solution if both o and @ satisfy F.

Definition (NAE Local Enumeration)

NAE-Enum(k, r): Given k-CNF Fand r > 0, s.t. every NAE satisfying assignment
of F has Hamming weight > r, output all NAE satisfying assignments of
Hamming weight r.
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1. (k — 1)-SAT can be solved in time T(n/2).
2. Middle slice function requires X115 _; circuits of size 2" /T(n/2).

Corollary
If NAE-Enum(k, n/2) < 2n—0og(k)/k)-n.
1. Can solve k-SAT in time 2n—°0ek)/k)-n showing SSETH is False.
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Solving NAE-Enum(k, r)

0. Given k-CNF G, let F(x) = G(x) A G(X). Every satisfying assignment of Fis
NAE-satisfying assighment of G and F.

1. Associate “Transversal Tree” with F that captures satisfying
assignments of Hamming weight r - “transversals”.

2. Randomly prune Transversal Tree s.t. every transversal corresponds to
unique leaf.

3. Visit all leaves of this pruned Transversal Tree.
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Transversal Tree

Definition (Transversal Tree)

Given k-CNF F:
e |f Fdoesn’t contain monotone clause, create leaf node.

¢ Else, pick monotone clause C (carefully), and for each x € C:

1. Recursively construct tree T, for Fy. 1
2. Add edge from current node to T, labelled x.
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Transversal Tree

F = (X1 vXav X3)(X1VXgV Xs)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)

(X‘ v X'z v Xg)

3
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Lemma

Every “transversal” of F corresponds to some (maybe many) valid leaves of T.



Transversal Tree Properties

F = (X1 VX2V X3)(X1VXqV Xs)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)
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Pruning Transversal Tree

Visiting all Transversals Once

1. At anode, let outgoing edges be ordered as x1, . .., x.
2. Forl <i<k:
2.1 Prune (delete) all edges in T, labelled with any of x1,...,x;—1 & search Tj,.
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Which Ordering?

Canonical Ordering

Same as k-SAT algorithm by Monien-Speckenmeyer [
Monien-Speckenmeyer’85 ].

Previous and This work: Randomized Ordering

Randomize order of outgoing edges at every node.
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Survival Probability

Survival Probability of Edge

For edge e let o(e) = Pr[e not pruned under randomized ordering].

Survival Probability of Path

For path P:
o(P) = Prlall edges on path not pruned under randomized ordering].

Lemma (Expected Runtime of Our Algorithm)

Expected runtime under randomized ordering is o(T) = 3_ o1 0 (Proot.c)



Survival Probability

F = (X1Vv X2V X3)(X1VXgqVXs5)(X2V X3V Xg)(X3 V X5)
AND (negations of these clauses)
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Remaining Analysis

® Use NAE assumption to force deterministic pruning, guaranteeing
certain clauses must exist (as well as not exist).

e Use and refine tools from GPPST'24 (NAE assumption simplifies this
analysis).
® With careful accounting, conclude

o(T) < 64,
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Open Questions

L
® Prove non-trivial bounds for NAE-Enum(k, n/2) for k > 3.
* Prove that Enum(3,n/2) can be solved in time 6"/4.

® Prove that in every 3-uniform hypergraph with transversal number n/2,
number of transversals of size n/2 is < 6"/4,



