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Graph states, local unitary equivalence, local

Clifford equivalence & local complementation
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Graph states

A graph state is a quantum state represented by an undirected1 and
simple2 graph. The vertices represent the qubits and the edges represent
entanglement.
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Graph states ∼ Stabilizer states.

1Edges do not have a direction.
2No multiples edges and no loops.
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Entanglement of graph states

Graph states are useful entangled resources (measurement-based quantum
computation, quantum error correction...). → It is a fundamental problem
to know whether two graph states have the same entanglement.

For graph states, having the same entanglement = being local unitary
equivalent, i.e. related by single-qubit unitary quantum gates.
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An easier subproblem: local Clifford equivalence

Two graph states are said local Clifford equivalent (or LC-equivalent) if
they are related by unitaries in the local Clifford group.
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Theorem (Van den Nest, Dehaene, De Moor, 2004)

Two graph states are local Clifford equivalent iff the two corresponding
graphs are related by local complementations.
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Local complementation

Definition (Kotzig, 1966)

A local complementation on a vertex u consists in complementing the
(open) neighbourhood of u.
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Algorithmic aspect of local Clifford equivalence

There exists an efficient algorithm (Bouchet, 1991) to recognise whether
two graphs are related by local complementations, implying an efficient
algorithm to recognise whether two graph states are local Clifford
equivalent.
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LU ̸= LC

Unfortunately, LU ̸= LC, i.e. local Clifford equivalence and local unitary
equivalence do not coincide.

← 27-qubit pair of graph states that are local
unitary equivalent but not local Clifford equivalent (Ji et al. 2008).

Consequence: local complementation does not capture the local unitary
equivalence of graph states.
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LU=LC for some classes of graphs

They are some known families of graph states for which LU=LC i.e. local
complementation captures local unitary equivalence:

Graph states over at most 8 qubits (Cabello et al. 2009)

Complete graphs (Van den Nest, Dehaene, De Moor, 2005)

Complete bipartite graphs (Tzitrin, 2018)

Graphs with no cycle of length 3 or 4 (Zeng et al. 2007)

But what about local unitary equivalence for any graph ? Can we
construct a graphical characterisation ?
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Generalising local complementation to capture

local unitary equivalence
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A refinement of idempotent local complementations

A sequence of local complementations may leave the graph invariant.
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A 2-local complementation consists in toggling every edge that was
toggled 2 mod 4 times by the idempotent local complementations.
(There are also some additional conditions on the edges for the 2-local
complementation the be valid.)
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r -local complementation

3-local complementation is a refinement of idempotent 2-local
complementation, and so on...
→ Infinite family of graphical operations parametrised by an integer r :

r-local complementations

1-local complementation = local complementation.
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Main result

Theorem (this work)

Two graph states are local unitary equivalent iff the two corresponding
graphs are related by r-local complementations for some r .
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An infinite hierarchy of local equivalences

G1 and G2 are related
by local complementations

by 2-local
complementations

by 3-local
complementations

...
G1 and G2 are local
unitary equivalent
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Proof sketch: Minimal local set
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Minimal local sets are subsets of vertices that are invariant by local unitary
equivalence and carry information on the possible local unitaries that maps
graph states to other graph states.

Theorem (C, Perdrix, 2024)

Each vertex of a graph is covered by at least one minimal local set.
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Proof sketch: Standard form for graph states

G1 G2

local unitaries

X (α)

Z (β)

I

VX

VZ

⊥

VX

VZ

⊥

local

complementations

local

complementations

r -local complementation
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Applications

LU=LC for some repeater graph states, as conjectured in [Tzitrin, 2018].

Theorem (C, Perdrix, 2025)

LU=LC for graph states up to 19 qubits.

It was previously known that LU=LC for graph states up to 8 qubits, and
there exists a 27-qubit pair for which LU ̸=LC.

Theorem (C, Perdrix, 2025)

There exists an algorithm that decides whether two graph states are local
unitary equivalent with runtime nlog2(n)+O(1).
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Summary
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Summary

The generalised local complementation is a graph rule that completely
captures the local unitary equivalence of graph states.

Open questions:

Does there exist a counter-example to LU=LC between 20 and 26
qubits ?

Does there exist a polynomial-time algorithm for local unitary
equivalence ?
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