MaxMin Separation Problems: FPT Algorithms for *st*-Separator and Odd Cycle Transversal

Ajinkya Gaikwad

Joint work with H. Kumar, S. Maity, S. Saurabh, R. Sharma

Indian Institute of Science Education and Research, Pune, India

STACS 2025

Definition

Given a connected graph G = (V, E) and two vertices $s, t \in V$, a set $S \subseteq V(G)$ is called an *s*-*t* separator if there is no path between *s* and *t* in G - S.

Definition

Given a connected graph G = (V, E) and two vertices $s, t \in V$, a set $S \subseteq V(G)$ is called an *s*-*t* separator if there is no path between *s* and *t* in G - S.

Definition

An s-t separator is called a *minimal* s-t separator in G if no proper subset of S also separates s and t.

Definition

Given a connected graph G = (V, E) and two vertices $s, t \in V$, a set $S \subseteq V(G)$ is called an *s*-*t* separator if there is no path between *s* and *t* in G - S.

Definition

An s-t separator is called a *minimal* s-t separator in G if no proper subset of S also separates s and t.

Definition

Given a graph G = (V, E), a set $S \subseteq V(G)$ is called an *Odd Cycle Transversal* if G - S is a bipartite graph.

Definition

Given a connected graph G = (V, E) and two vertices $s, t \in V$, a set $S \subseteq V(G)$ is called an *s*-*t* separator if there is no path between *s* and *t* in G - S.

Definition

An s-t separator is called a *minimal* s-t separator in G if no proper subset of S also separates s and t.

Definition

Given a graph G = (V, E), a set $S \subseteq V(G)$ is called an *Odd Cycle Transversal* if G - S is a bipartite graph.

Definition

A set $S \subseteq V(G)$ is called a *minimal Odd Cycle Transversal* if:

- 1. G-S is a bipartite graph,
- 2. No proper subset of S is an Odd Cycle Transversal.

MAXIMUM MINIMAL st-Separator

Input: An undirected graph G = (V, E), two distinct vertices s and t and a positive integer k.

Question: Determine whether there exists a minimal st-separator in G of size at least k.

MAXIMUM MINIMAL *st*-SEPARATOR **Input:** An undirected graph G = (V, E), two distinct vertices *s* and *t* and a positive integer *k*. **Question:** Determine whether there exists a minimal *st*-separator in *G* of size at least *k*.

MAXIMUM MINIMAL ODD CYCLE TRANSVERSAL Input: An undirected graph G = (V, E), and a positive integer k. Question: Determine whether there exists a minimal odd cycle transversal in G of size at least k. MAXIMUM MINIMAL *st*-SEPARATOR **Input:** An undirected graph G = (V, E), two distinct vertices *s* and *t* and a positive integer *k*. **Question:** Determine whether there exists a minimal *st*-separator in *G* of size at least *k*.

MAXIMUM MINIMAL ODD CYCLE TRANSVERSAL Input: An undirected graph G = (V, E), and a positive integer k. Question: Determine whether there exists a minimal odd cycle transversal in G of size at least k.

Note: Both the MAXIMUM MINIMAL *st*-SEPARATOR and the MAXIMUM MINIMAL ODD CYCLE TRANSVERSAL problem are NP-hard.

Our Results and Main Technique

Theorem

MAXIMUM MINIMAL st-SEPARATOR and MAXIMUM MINIMAL OCT parameterized by k are FPT.

Theorem

MAXIMUM MINIMAL st-SEPARATOR and MAXIMUM MINIMAL OCT parameterized by k are FPT.

To prove these results, we rely on the following meta-result of Lokshatonov, Ramanujan, Saurabh, and Zehavi [ICALP 2018].

Theorem

Let ψ be a CMSO formula. For all $k \in \mathbb{N}$, there exists $q \in \mathbb{N}$ such that if there exists an algorithm that solves $CMSO[\psi]$ on (q, k)-unbreakable structures in time $\mathcal{O}(n^d)$ for some d > 4, then there exists an algorithm that solves $CMSO[\psi]$ on general structures in time $\mathcal{O}(n^d)$.

Theorem

MAXIMUM MINIMAL st-SEPARATOR and MAXIMUM MINIMAL OCT parameterized by k are FPT.

To prove these results, we rely on the following meta-result of Lokshatonov, Ramanujan, Saurabh, and Zehavi [ICALP 2018].

Theorem

Let ψ be a CMSO formula. For all $k \in \mathbb{N}$, there exists $q \in \mathbb{N}$ such that if there exists an algorithm that solves $CMSO[\psi]$ on (q, k)-unbreakable structures in time $\mathcal{O}(n^d)$ for some d > 4, then there exists an algorithm that solves $CMSO[\psi]$ on general structures in time $\mathcal{O}(n^d)$.

Application: If the following conditions are satisfied:

- 1. The problem can be expressed as a counting monadic second-order logic (CMSO) formula of length f(k).
- 2. The problem is fixed-parameter tractable on (q, k)-unbreakable graphs parameterized by both q and k.

Then, the problem is fixed-parameter tractable (FPT) on general graphs.

Step 1

Lemma

MAXIMUM MINIMAL st-SEPARATOR is CMSO-definable with a formula of length f(k).

CMSO Formula:

$$\begin{split} \psi &= \exists Z \subseteq V(G) \bigg(\exists v_1, v_2, \dots, v_k \in Z \Big(\bigwedge_{1 \leq i < j \leq k} v_i \neq v_j \Big) \\ & \wedge \neg \exists U \subseteq V(G) \setminus Z \big((s \in U) \land (t \in U) \land \mathsf{conn}(U) \big) \\ & \wedge \bigwedge_{i=1}^k \exists U \subseteq V(G) \setminus (Z \setminus \{v_i\}) \big((s \in U) \land (t \in U) \land \mathsf{conn}(U) \big) \bigg) \end{split}$$

It is clear that the size of the above formula ψ depends only on k.

Theorem

For positive integers $q, k \geq 1$, MAXIMUM MINIMAL *st*-SEPARATOR on (q, k)-unbreakable graphs on n vertices can be solved in time $(k-1)^{2q} \cdot n^{\mathcal{O}(1)}$.

Theorem

For positive integers $q, k \geq 1$, MAXIMUM MINIMAL *st*-SEPARATOR on (q, k)-unbreakable graphs on n vertices can be solved in time $(k-1)^{2q} \cdot n^{\mathcal{O}(1)}$.

Theorem

MAXIMUM MINIMAL st-SEPARATOR is FPT when parameterized by k.

FPT Algorithm for MAXIMUM MINIMAL OCT

Step 1: CMSO formula for MAXIMUM MINIMAL OCT

$$\varphi \equiv \exists Z \subseteq V(G) \left(\exists v_1, v_2, \dots, v_k \in Z \left(\bigwedge_{1 \le i < j \le k} v_i \neq v_j \right) \\ \wedge \mathbf{bipartite}(V(G) \setminus Z) \\ \wedge \left(\bigwedge_{i=1}^k \neg \mathbf{bipartite}(V(G) \setminus (Z \setminus \{v_i\}) \right) \right)$$

where **bipartite**(W) is a CMSO sentence given below, which checks whether the graph induced by the vertices in W is bipartite.

Step 1: CMSO formula for MAXIMUM MINIMAL OCT

$$\varphi \equiv \exists Z \subseteq V(G) \left(\exists v_1, v_2, \dots, v_k \in Z \left(\bigwedge_{1 \le i < j \le k} v_i \neq v_j \right) \\ \wedge \mathbf{bipartite}(V(G) \setminus Z) \\ \wedge \left(\bigwedge_{i=1}^k \neg \mathbf{bipartite}(V(G) \setminus (Z \setminus \{v_i\}) \right) \right)$$

where **bipartite**(W) is a CMSO sentence given below, which checks whether the graph induced by the vertices in W is bipartite.

$$\begin{split} \mathbf{bipartite}(W) \equiv &\exists X \subseteq W, \exists Y \subseteq W \\ & \left((X \cap Y = \emptyset) \land (X \cup Y = W) \\ & \land \forall u, v \in W \ (E(u, v) \implies (u \in X \iff v \in Y)) \right). \end{split}$$

Step 2: FPT Algorithm on (q, 2k)-Unbreakable Graphs

We provide two sufficient conditions for the existence of a minimal OCT of size at least k on (q,2k)-unbreakable graphs.

We provide two sufficient conditions for the existence of a minimal OCT of size at least k on (q, 2k)-unbreakable graphs.

Condition 1: If there exists an induced odd cycle of length at least 2q + 2 in G, then G has a minimal oct of size at least k.

We provide two sufficient conditions for the existence of a minimal OCT of size at least k on (q, 2k)-unbreakable graphs.

Condition 1: If there exists an induced odd cycle of length at least 2q + 2 in G, then G has a minimal oct of size at least k.

Condition 2: Let d be any positive integer. If there exists a family \mathcal{F} containing distinct induced odd cycles of G of length at most d and $|\mathcal{F}| > d(d!)(k-1)^d$ then G has a minimal oct of size at least k.

We provide two sufficient conditions for the existence of a minimal OCT of size at least k on (q, 2k)-unbreakable graphs.

Condition 1: If there exists an induced odd cycle of length at least 2q + 2 in G, then G has a minimal oct of size at least k.

Condition 2: Let d be any positive integer. If there exists a family \mathcal{F} containing distinct induced odd cycles of G of length at most d and $|\mathcal{F}| > d(d!)(k-1)^d$ then G has a minimal oct of size at least k.

Observation: Let (G, k) be an instance of MAXIMUM MINIMAL OCT. If a vertex $x \in V(G)$ does not participate in any induced odd cycle, then

(G,k) is equivalent to (G-x,k).

Given a graph G, a vertex $x \in V(G)$, and positive integers d, k, there is an algorithm that runs in $(kd)^{\mathcal{O}(d)} . n^{\mathcal{O}(1)}$ time and correctly outputs one of the following:

- 1. An induced odd cycle containing x.
- 2. An induced odd cycle of length at least d.
- 3. A family \mathcal{F} of distinct induced odd cycles, each of length at most d-1, such that

 $|\mathcal{F}| \ge d \cdot d! \cdot (k-1)^d.$

4. A determination that there is no induced odd cycle containing x in G.

Given a graph G, a vertex $x \in V(G)$, and positive integers d, k, there is an algorithm that runs in $(kd)^{\mathcal{O}(d)} . n^{\mathcal{O}(1)}$ time and correctly outputs one of the following:

- 1. An induced odd cycle containing x.
- 2. An induced odd cycle of length at least d.
- 3. A family \mathcal{F} of distinct induced odd cycles, each of length at most d-1, such that

- 4. A determination that there is no induced odd cycle containing x in G.
- Run the above lemma for each vertex $x \in V(G)$ and set d = 2q + 2.

Given a graph G, a vertex $x \in V(G)$, and positive integers d, k, there is an algorithm that runs in $(kd)^{\mathcal{O}(d)} . n^{\mathcal{O}(1)}$ time and correctly outputs one of the following:

- 1. An induced odd cycle containing x.
- 2. An induced odd cycle of length at least d.
- 3. A family \mathcal{F} of distinct induced odd cycles, each of length at most d-1, such that

- 4. A determination that there is no induced odd cycle containing x in G.
- ▶ Run the above lemma for each vertex x ∈ V(G) and set d = 2q + 2.
 ▶ Progress for each possibility:

Given a graph G, a vertex $x \in V(G)$, and positive integers d, k, there is an algorithm that runs in $(kd)^{\mathcal{O}(d)} . n^{\mathcal{O}(1)}$ time and correctly outputs one of the following:

- 1. An induced odd cycle containing x.
- 2. An induced odd cycle of length at least d.
- 3. A family \mathcal{F} of distinct induced odd cycles, each of length at most d-1, such that

- 4. A determination that there is no induced odd cycle containing x in G.
- Run the above lemma for each vertex $x \in V(G)$ and set d = 2q + 2.
- Progress for each possibility:
 - (1): Add this cycle of length at most 2q + 1 to \mathcal{F} .

Given a graph G, a vertex $x \in V(G)$, and positive integers d, k, there is an algorithm that runs in $(kd)^{\mathcal{O}(d)} . n^{\mathcal{O}(1)}$ time and correctly outputs one of the following:

- 1. An induced odd cycle containing x.
- 2. An induced odd cycle of length at least d.
- 3. A family \mathcal{F} of distinct induced odd cycles, each of length at most d-1, such that

- 4. A determination that there is no induced odd cycle containing x in G.
- Run the above lemma for each vertex $x \in V(G)$ and set d = 2q + 2.
- Progress for each possibility:
 - (1): Add this cycle of length at most 2q + 1 to \mathcal{F} .
 - (2) and (3): Directly imply a yes instance.

Given a graph G, a vertex $x \in V(G)$, and positive integers d, k, there is an algorithm that runs in $(kd)^{\mathcal{O}(d)} . n^{\mathcal{O}(1)}$ time and correctly outputs one of the following:

- 1. An induced odd cycle containing x.
- 2. An induced odd cycle of length at least d.
- 3. A family \mathcal{F} of distinct induced odd cycles, each of length at most d-1, such that

- 4. A determination that there is no induced odd cycle containing x in G.
- Run the above lemma for each vertex $x \in V(G)$ and set d = 2q + 2.
- Progress for each possibility:
 - (1): Add this cycle of length at most 2q + 1 to \mathcal{F} .
 - (2) and (3): Directly imply a yes instance.
 - (4): Reduce the graph by deleting x.

Lemma

If the number of vertices in G is at least $(2q+2)^2(2q+2)!(k-1)^{2q+2}+1$, then G contains a minimal oct of size at least k.

Lemma

If the number of vertices in G is at least $(2q+2)^2(2q+2)!(k-1)^{2q+2}+1$, then G contains a minimal oct of size at least k.

Theorem

For any positive integers $q, k \geq 1$, MAXIMUM MINIMAL OCT on (q, 2k)-unbreakable graphs on n vertices can be solved in time $2^{(qk)^{\mathcal{O}(q)}} \cdot n^{\mathcal{O}(1)}$.

Lemma

If the number of vertices in G is at least $(2q+2)^2(2q+2)!(k-1)^{2q+2}+1$, then G contains a minimal oct of size at least k.

Theorem

For any positive integers $q, k \geq 1$, MAXIMUM MINIMAL OCT on (q, 2k)-unbreakable graphs on n vertices can be solved in time $2^{(qk)^{\mathcal{O}(q)}} \cdot n^{\mathcal{O}(1)}$.

Theorem

MAXIMUM MINIMAL ODD CYCLE TRANSVERSAL is FPT when parameterized by k.

Acknowledgment

Conference Travel Support

- Infosys Travel Grant Supported by Infosys Foundation for attending STACS 2025.
- IARCS Travel Grant Provided by the Indian Association for Research in Computing Science (IARCS) to support my travel for STACS 2025.

I sincerely appreciate the support from these organizations, which made my participation in this conference possible.

Thank You!

Questions?

Feel free to ask.