Metric Dimension and Geodetic Set Parameterized by Vertex Cover

- @STACS
- March 05, 2025
- Prafullkumar Tale
 - Joint work with
- Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma

Catch the Spy

Catch the Spy - Communication network of agents

Catch the Spy Communication network of agents Drop a message at a node Ex. green at v₁₂

Catch the Spy - Communication network of agents - Drop a message at a node Ex. green at v_{12} - Each agent conveys the message to all of its neighbours in the next time step - [Time at which the message is received for the first time]

Catch the Spy - Communication network of agents - Drop a message at a node Ex. green at v_{12} - Each agent conveys the message to all of its neighbours in the next time step - [Time at which the message is received for the first time] - Catch the message out of network

Catch the Spy - Communication network of agents - Drop a message at a node Ex. green at v_{12} - Each agent conveys the message to all of its neighbours in the next time step - [Time at which the message is received for the first time]

- Catch the message out of network $[0]: \{v_{12}\} [1]: \{v_{10}\} [2]: \{v_6, v_{11}\}$ $[3]: \{v_5, v_7\} \ [4]: \{v_4, v_8, v_9\} \ [5]: \{v_6, v_{11}\} \ [6]: \{v_1\}$

Catch the Spy - Communication network of agents - Drop a message at a node Ex. green at v_{12} - Each agent conveys the message to all of its neighbours in the next time step - [Time at which the message is received for the first time]

- Catch the message out of network $[0]: \{v_{12}\} [1]: \{v_{10}\} [2]: \{v_6, v_{11}\}$ $[3]: \{v_5, v_7\} \ [4]: \{v_4, v_8, v_9\} \ [5]: \{v_6, v_{11}\} \ [6]: \{v_1\}$

Q: Minimum nr of messages to catch the spy?

Catch the Spy – Drop message green at v_{12} [0] : { v_{12} } [1] : { v_{10} } [2] : { v_6 , v_{11} } [3] : { v_5 , v_7 } [4] : { v_4 , v_8 , v_9 } [5] : { v_6 , v_{11} } [6] : { v_1 }

Catch the Spy – Drop message green at v_{12} [0] : { v_{12} } [1] : { v_{10} } [2] : { v_6 , v_{11} } [3] : { v_5 , v_7 } [4] : { v_4 , v_8 , v_9 } [5] : { v_6 , v_{11} } [6] : { v_1 }

- Drop message red at v_8

[6][2] $v_4[4]$ [4][0 v_8 $v_{6}[2]$ $v_{9[4]}$ $v_{12}[0][4]$

Catch the Spy - Drop message green at v_{12} $[0]: \{v_{12}\} [1]: \{v_{10}\} [2]: \{v_6, v_{11}\}$ $[3]: \{v_5, v_7\} [4]: \{v_4, v_8, v_9\} [5]: \{v_6, v_{11}\} [6]: \{v_1\}$ - Drop message red at v_8 $[0]: \{v_8\} \ [1]: \{v_2, v_7, v_9\}$ $[2]: \{v_1, v_4, v_5, v_6\} [3]: \{v_3, v_{10}\} [4]: \{v_{11}, v_{12}\}$

Catch the Spy - Drop message green at v_{12} $[0]: \{v_{12}\} [1]: \{v_{10}\} [2]: \{v_6, v_{11}\}$ $[3]: \{v_5, v_7\} [4]: \{v_4, v_8, v_9\} [5]: \{v_6, v_{11}\} [6]: \{v_1\}$ - Drop message red at v_8 $[0]: \{v_8\} [1]: \{v_2, v_7, v_9\}$ $[2]: \{v_1, v_4, v_5, v_6\} [3]: \{v_3, v_{10}\} [4]: \{v_{11}, v_{12}\}$

- Any (valid) combination is unique. $[2][2] - v_6, [4][2] - v_4, [4][1] - v_9$

Catch the Spy – Drop message green at v_{12} - Drop message red at v_8 - Any (valid) combination is unique. $[2][2] - v_6, [4][2] - v_4, [4][1] - v_9$

Catch the Spy - Drop message green at v_{12} - Drop message red at v_8 - Any (valid) combination is unique. $[2][2] - v_6, [4][2] - v_4, [4][1] - v_9$ - $\{v_{12}, v_8\}$ is called a resolving set.

Catch the Spy - Drop message green at v_{12} - Drop message red at v_8 - Any (valid) combination is unique. $[2][2] - v_6, [4][2] - v_4, [4][1] - v_9$ - $\{v_{12}, v_8\}$ is called a resolving set. - A resolving set is an ordered set $S = \{s_1, s_2, ...\} \subseteq V(G)$ s.t. any $u \neq v \in V(G)$, $\langle d(u, s_1); d(u, s_2); ... \rangle \neq \langle d(v, s_1); d(v, s_2); ... \rangle$

Catch the Spy - Drop message green at v_{12} - Drop message red at v_8 - Any (valid) combination is unique. $[2][2] - v_6, [4][2] - v_4, [4][1] - v_9$ - $\{v_{12}, v_8\}$ is called a resolving set. - A resolving set is an ordered set $S = \{s_1, s_2, ...\} \subseteq V(G)$ s.t. any $u \neq v \in V(G)$, $\langle d(u, s_1); d(u, s_2); ... \rangle \neq \langle d(v, s_1); d(v, s_2); ... \rangle$ $-d(u, s_i) =$ shortest distance from u to s_i

Metric Dimension Input: Graph G, int k Output: Does there exist a resolving set of size at most k?

Metric Dimension Input: Graph G, int k Output: Does there exist a resolving set of size at most k?

- Solution at one part of the graph, plays important role in other part of the graph. Ex. v_{12} resolves v_1, v_2 .

Metric Dimension Input: Graph G, int k Output: Does there exist a resolving set of size at most k?

- Solution at one part of the graph, plays important role in other part of the graph. Ex. v_{12} resolves v_1, v_2 .

- This phenomenon makes the problem hard,

Metric Dimension Input: Graph G, int k Output: Does there exist a resolving set of size at most k?

- Solution at one part of the graph, plays important role in other part of the graph. Ex. v_{12} resolves v_1, v_2 .

- This phenomenon makes the problem hard,

- but also makes it ideal to obtain exotic lower bounds.

bounded diameter graphs - admits $2^{2^{o(tW)}} \cdot n^{O(1)}$ -time algo, but - does not admit $2^{2^{o(tW)}} \cdot n^{O(1)}$ algo unless the ETH fails.

First NP-Complete problems to admit such lower bounds

First NP-Complete problems to admit such lower bounds

- Earlier known results were Σ_2^p -complete or Π_2^p -complete.

First NP-Complete problems to admit such lower bounds

How far can we push this result?

- Earlier known results were Σ_2^p -complete or Π_2^p -complete.

First NP-Complete problems to admit such lower bounds

How far can we push this result?

Holds for feedback vertex set. pathwidth. and treedepth.

- Earlier known results were Σ_2^p -complete or Π_2^p -complete.

First NP-Complete problems to admit such lower bounds

How far can we push this result?

Holds for feedback vertex set, pathwidth, and treedepth.

How about vertex cover?

- Earlier known results were Σ_2^p -complete or Π_2^p -complete.

Thm. The Metric Dimension and Geodetic Set problems - admit $2^{(VC)^2} \cdot n^{\mathcal{O}(1)}$ -time algo, but - do not admit $2^{\mathcal{O}(VC^2)} \cdot n^{\mathcal{O}(1)}$ algo unless the ETH fails.

Thm. The Metric Dimension and Geodetic Set problems - admit $2^{(VC)^2} \cdot n^{\mathcal{O}(1)}$ -time algo, but - do not admit $2^{\mathcal{O}(VC^2)} \cdot n^{\mathcal{O}(1)}$ algo unless the ETH fails.

Thm. The Metric Dimension and Geodetic Set problems - admit kernel with $2^{O(VC)}$ vertices, but

- do not admit a kernel with $2^{o(VC)}$ vertices unless the ETH fails.

Thm. The Metric Dimension and Geodetic Set problems - admit $2^{(VC)^2} \cdot n^{\mathcal{O}(1)}$ -time algo, but - do not admit $2^{\mathcal{O}(VC^2)} \cdot n^{\mathcal{O}(1)}$ algo unless the ETH fails.

Thm. The Metric Dimension and Geodetic Set problems - admit kernel with $2^{O(VC)}$ vertices, but - do not admit a kernel with $2^{o(VC)}$ vertices unless the ETH fails.

(Split Contraction [ALSZ, STACS 2017])

Thm. The Metric Dimension and Geodetic Set problems - admit $2^{(VC)^2} \cdot n^{\mathcal{O}(1)}$ -time algo, but - do not admit $2^{\mathcal{O}(VC^2)} \cdot n^{\mathcal{O}(1)}$ algo unless the ETH fails.

Thm. The Metric Dimension and Geodetic Set problems - admit kernel with $2^{O(VC)}$ vertices, but

> (Edge Clique Cover [CPP, SODA'13], Biclique Cover [CIK, IPEC'16], Strong Met–Dim [FGKLIST, ICALP'24])

(Split Contraction [ALSZ, STACS 2017])

- do not admit a kernel with $2^{o(VC)}$ vertices unless the ETH fails.

Solution at one part of the graph, plays important role in other part of the graph. Ex. v_{12} and v_1 covers a lot of vertices.

Obs: If $N(y_1) = N(y_2) = N(y_3)$ for y_1, y_2, y_3 in ind-set, then any resolving set contains at least two of them.

Obs: If $N(y_1) = N(y_2) = N(y_3)$ for y_1, y_2, y_3 in ind-set, then any resolving set contains at least two of them.

\Rightarrow kernel with $2^{O(VC)}$ vertices

Obs: If $N(y_1) = N(y_2) = N(y_3)$ for y_1, y_2, y_3 in ind-set, then any resolving set contains at least two of them.

 \Rightarrow kernel with $2^{O(VC)}$ vertices

Obs: Forced vertices + vertex cover S is a resolving set.

Obs: If $N(y_1) = N(y_2) = N(y_3)$ for y_1, y_2, y_3 in ind-set, then any resolving set contains at least two of them.

 \Rightarrow kernel with $2^{O(VC)}$ vertices

Obs: Forced vertices + vertex cover S is a resolving set.

⇒ `free vertices' is a resolving set is at most vc

Obs: If $N(y_1) = N(y_2) = N(y_3)$ for y_1, y_2, y_3 in ind-set, then any resolving set contains at least two of them.

 \Rightarrow kernel with $2^{O(VC)}$ vertices

Obs: Forced vertices + vertex cover S is a resolving set.

⇒ `free vertices' is a resolving set is at most vc

 \Rightarrow algorithm with desired running time

3–SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$

3-SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$ • • • • *n* var

Q: How to resolve following pairs? $\{C_1, C_2\} \{C'_1, C_2\} \dots$

Q: How to resolve following pairs? $\{C_1, C_2\} \{C'_1, C_2\} \dots$

Q: How to control the vertex cover? i.e. limit the interactions

Q: How to resolve following pairs? $\{C_1, C_2\} \{C'_1, C_2\} \dots$

Using bit encoding which cost log(set-size) extra vertices

Q: How to control the vertex cover? i.e. limit the interactions

Q: How to resolve following pairs? $\{C_1, C_2\} \{C'_1, C_2\} \dots$

Using bit encoding which cost log(set-size) extra vertices

Q: How to control the vertex cover? i.e. limit the interactions

Sperner Family

3–SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$

3–SAT (with n var) to Metric Dimension with vc = $\mathcal{O}(\sqrt{n})$ Sperner Family: Collection \mathcal{F} of subsets of a universe such that for any two sets A_1, A_2 in \mathcal{F} neither $A_1 \subseteq A_2$ nor $A_2 \subseteq A_1$.

3-SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$ Sperner Family: Collection \mathcal{F} of subsets of a universe such that for any two sets A_1, A_2 in \mathcal{F} neither $A_1 \subseteq A_2$ nor $A_2 \subseteq A_1$. i.e. $A_1 \cap A_2 \neq \emptyset$ for any A_2 in $\mathcal{F} \setminus \{A_1\}$

3–SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$ Sperner Family: Collection \mathcal{F} of subsets of a universe such that for any two sets A_1, A_2 in \mathcal{F} neither $A_1 \subseteq A_2$ nor $A_2 \subseteq A_1$. i.e. $A_1 \cap A_2 \neq \emptyset$ for any A_2 in $\mathcal{F} \setminus \{A_1\}$ Ex: Universe: $\{1,2,\ldots,2p\}$ for an integer p and \mathcal{F} — each set contains exactly p elements.

3–SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$ Sperner Family: Collection \mathcal{F} of subsets of a universe such that for any two sets A_1, A_2 in \mathcal{F} neither $A_1 \subseteq A_2$ nor $A_2 \subseteq A_1$. i.e. $A_1 \cap A_2 \neq \emptyset$ for any A_2 in $\mathcal{F} \setminus \{A_1\}$ Ex: Universe: $\{1,2,\ldots,2p\}$ for an integer p and \mathcal{F} — each set contains exactly p elements. For p = 3, $A_1 = \{1,3,5\}$, $A_2 = \{1,3,6\}$ are sets in \mathcal{F}

3–SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$ for any two sets A_1, A_2 in \mathcal{F} neither $A_1 \subseteq A_2$ nor $A_2 \subseteq A_1$. i.e. $A_1 \cap A_2 \neq \emptyset$ for any A_2 in $\mathcal{F} \setminus \{A_1\}$ Ex: Universe: $\{1,2,\ldots,2p\}$ for an integer p and \mathcal{F} — each set contains exactly p elements. For p = 3, $A_1 = \{1,3,5\}$, $A_2 = \{1,3,6\}$ are sets in \mathcal{F}

For universe of size $\mathcal{O}(p)$, we get \mathcal{F} of size $2^{\mathcal{O}(p)}$

- Sperner Family: Collection \mathcal{F} of subsets of a universe such that
3–SAT (with n var) to Metric Dimension with vc = $O(\sqrt{n})$ for any two sets A_1, A_2 in \mathcal{F} neither $A_1 \subseteq A_2$ nor $A_2 \subseteq A_1$. i.e. $A_1 \cap A_2 \neq \emptyset$ for any A_2 in $\mathcal{F} \setminus \{A_1\}$ Ex: Universe: $\{1,2,\ldots,2p\}$ for an integer p and \mathcal{F} — each set contains exactly p elements. For p = 3, $A_1 = \{1,3,5\}$, $A_2 = \{1,3,6\}$ are sets in \mathcal{F}

For universe of size $\mathcal{O}(p)$, we get \mathcal{F} of size $2^{\mathcal{O}(p)}$

- Sperner Family: Collection \mathcal{F} of subsets of a universe such that
- For $p = O(\sqrt{n})$, \mathcal{F} is of size $2^{O(\sqrt{n})}$, i.e. unique set for each asst.

Replace direct connection via universe of Sperner Family Asst a_1 connected to $A_1 = \{1, 3, 5\}$

Replace direct connection via universe of Sperner Family Asst a_1 connected to $A_1 = \{1, 3, 5\}$

Asst a_1 connected to $A_1 = \{1, 3, 5\}$

 C_1 C_2 are at dist two from any asst

Asst a_1 connected to $A_1 = \{1, 3, 5\}$

 C_1 C_2 are at dist two from any asst

Asst a_1 connected to $A_1 = \{1, 3, 5\}$

 $C_1 C_2$ are at dist two from any asst

If $a_1 \models C_1$, connect C'_1 to $\bar{A}_1 = \{2,4,6\}$

Asst a_1 connected to $A_1 = \{1, 3, 5\}$

 $C_1 C_2$ are at dist two from any asst

If $a_1 \models C_1$, connect C'_1 to $\bar{A}_1 = \{2,4,6\}$

Replace direct connection via universe of Sperner Family Asst a_1 connected to $A_1 = \{1, 3, 5\}$ $C_1 C_2$ are at dist two from any asst If $a_1 \models C_1$, connect C'_1 to $\bar{A}_1 = \{2,4,6\}$ If $a_1 \not\models C_2$ and $a_2 \not\models C_2$, connect C'_2 to $\bar{A_2}$ for some $A_2 \neq A_1$

Replace direct connection via universe of Sperner Family Asst a_1 connected to $A_1 = \{1, 3, 5\}$ $C_1 C_2$ are at dist two from any asst If $a_1 \models C_1$, connect C'_1 to $\bar{A}_1 = \{2,4,6\}$ If $a_1 \not\models C_2$ and $a_2 \not\models C_2$, connect C'_2 to $\bar{A_2}$ for some $A_2 \neq A_1$

Replace direct connection via universe of Sperner Family Asst a_1 connected to $A_1 = \{1, 3, 5\}$ C_1 C_2 are at dist two from any asst If $a_1 \models C_1$, connect C'_1 to $\bar{A}_1 = \{2,4,6\}$ If $a_1 \not\models C_2$ and $a_2 \not\models C_2$, connect C'_2 to $\bar{A_2}$ for some $A_2 \neq A_1$

 \Rightarrow dist(a_1, C') = 3 iff $a_1 \models C$

Replace direct connection via universe of Sperner Family Asst a_1 connected to $A_1 = \{1, 3, 5\}$ C_1 C_2 are at dist two from any asst If $a_1 \models C_1$, connect C'_1 to $\bar{A}_1 = \{2,4,6\}$ If $a_1 \not\models C_2$ and $a_2 \not\models C_2$, connect C'_2 to $\bar{A_2}$ for some $A_2 \neq A_1$ \Rightarrow dist(a_1, C') = 3 iff $a_1 \models C$ \Rightarrow vc(*G*) = $\mathcal{O}(\sqrt{n})$

Thm. Metric Dimension do not admit $2^{o(VC^2)} \cdot n^{O(1)}$ algo unless the ETH fails.

Recall that `free vertices' is a resolving set is at most vc

Thm. Metric Dimension do not admit $2^{o(VC^2)} \cdot n^{O(1)}$ algo unless the ETH fails.

Recall that `free vertices' is a resolving set is at most vc

Hence, kernel with $2^{o(VC)}$ vertices will imply $2^{o(VC^2)}$ algo.

resolving set is at most vc ces will imply $2^{o(VC^2)}$ algo.

Thm. Metric Dimension do not admit $2^{o(VC^2)} \cdot n^{O(1)}$ algo unless the ETH fails.

Recall that `free vertices' is a resolving set is at most vc

Hence, kernel with $2^{o(VC)}$ vertices will imply $2^{o(VC^2)}$ algo.

Thm. The Metric Dimension do not admit a kernel with $2^{o(VC)}$ vertices unless the ETH fails.

Thm. Metric Dimension do not admit $2^{o(VC^2)} \cdot n^{O(1)}$ algo unless the ETH fails.

Recall that `free vertices' is a resolving set is at most vc

Hence, kernel with $2^{o(VC)}$ vertices will imply $2^{o(VC^2)}$ algo.

Thm. The Metric Dimension do not admit a kernel with $2^{o(VC)}$ vertices unless the ETH fails.

Any other (metric graph) NP-Complete problems that admit such lower bounds?

Thank you

