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Catch the Spy

- Catch the message out of network

- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of 
its neighbours in the next time step
- [Time at which the message is received for 
the first time]
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22𝒪(tw) ⋅ n𝒪(1)
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First NP-Complete problems to admit such lower bounds 

Earlier known results were -complete or -complete.  Σp
2 Πp

2

How far can we push this result? 

Holds for feedback vertex set, pathwidth, and treedepth.  

How about vertex cover?
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Thm. The Metric Dimension and Geodetic Set problems 
- admit -time algo, but
- do not admit  algo unless the ETH fails.

2(vc)2 ⋅ n𝒪(1)

2o(vc2) ⋅ n𝒪(1)

Thm. The Metric Dimension and Geodetic Set problems 
- admit kernel with  vertices, but
- do not admit a kernel with  vertices unless the ETH fails.

2𝒪(vc)

2o(vc)

Our results

(Split Contraction [ALSZ, STACS 2017])

(Edge Clique Cover [CPP, SODA’13], Biclique Cover [CIK, IPEC’16],  
Strong Met-Dim [FGKLIST, ICALP’24])
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Input: Graph , int 
Output:  a subset  of  vertices s.t. for 
any vertex  is covered by a shortest path 
between two vertices in 

G k
∃? S k

u
S

Solution at one part of the graph, plays 
important role in other part of the graph.  
Ex.  and  covers a lot of vertices.v12 v1
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Thm. Metric Dimension admits kernel with  vertices and 
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If  for  in 
ind-set, then any resolving set contains at least 
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3



Thm. Metric Dimension admits kernel with  vertices and 
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If  for  in 
ind-set, then any resolving set contains at least 
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with  vertices ⇒ 2𝒪(vc)



Thm. Metric Dimension admits kernel with  vertices and 
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If  for  in 
ind-set, then any resolving set contains at least 
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with  vertices ⇒ 2𝒪(vc)

Obs: Forced vertices + vertex cover S is a resolving set.



Thm. Metric Dimension admits kernel with  vertices and 
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If  for  in 
ind-set, then any resolving set contains at least 
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with  vertices ⇒ 2𝒪(vc)

Obs: Forced vertices + vertex cover S is a resolving set.

 `free vertices’ is a resolving set is at most ⇒ vc



Thm. Metric Dimension admits kernel with  vertices and 
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If  for  in 
ind-set, then any resolving set contains at least 
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with  vertices ⇒ 2𝒪(vc)

Obs: Forced vertices + vertex cover S is a resolving set.

 `free vertices’ is a resolving set is at most ⇒ vc

 algorithm with desired running time⇒
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3-SAT (with n var) to Metric Dimension with  vc = 𝒪( n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via 
universe of Sperner Family
Asst  connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect  to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}
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If  and , connect  
to  for some 

a1 /⊧ C2 a2 ⊧ C2 C′ 2
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Recall that `free vertices’ is a resolving set is at most vc

Hence, kernel with  vertices will imply  algo.2o(vc) 2o(vc2)

Thm. The Metric Dimension do not admit a kernel with  
vertices unless the ETH fails.

2o(vc)

Any other (metric graph) NP-Complete problems that 
admit such lower bounds?



Thank you


