
Metric Dimension and Geodetic
Set Parameterized by Vertex Cover

Prafullkumar Tale

@STACS
March 05, 2025

Joint work with

Florent Foucaud, Esther Galby, Liana Khazaliya,
Shaohua Li, Fionn Mc Inerney, Roohani Sharma

Catch the Spy v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

Catch the Spy
- Communication network of agents

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3]

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

Catch the Spy
- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step
- [Time at which the message is received for
the first time]

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

Catch the Spy

- Catch the message out of network

- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step
- [Time at which the message is received for
the first time]

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

Catch the Spy

- Catch the message out of network

- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step
- [Time at which the message is received for
the first time]

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[0] : [1] : [2] :  
[3] : [4] : [5] : [6] :

{v12} {v10} {v6, v11}
{v5, v7} {v4, v8, v9} {v6, v11} {v1}

Catch the Spy

- Catch the message out of network

- Communication network of agents
- Drop a message at a node Ex. green at v12
- Each agent conveys the message to all of
its neighbours in the next time step
- [Time at which the message is received for
the first time]

Q: Minimum nr of messages to catch the spy?

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[0] : [1] : [2] :  
[3] : [4] : [5] : [6] :

{v12} {v10} {v6, v11}
{v5, v7} {v4, v8, v9} {v6, v11} {v1}

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0] : [1] : [2] :  
[3] : [4] : [5] : [6] :

{v12} {v10} {v6, v11}
{v5, v7} {v4, v8, v9} {v6, v11} {v1}

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Drop message red at v8

[0] : [1] : [2] :  
[3] : [4] : [5] : [6] :

{v12} {v10} {v6, v11}
{v5, v7} {v4, v8, v9} {v6, v11} {v1}

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Drop message red at v8
[0] : [1] :  
[2] : [3] : [4] :

{v8} {v2, v7, v9}
{v1, v4, v5, v6} {v3, v10} {v11, v12}

[0] : [1] : [2] :  
[3] : [4] : [5] : [6] :

{v12} {v10} {v6, v11}
{v5, v7} {v4, v8, v9} {v6, v11} {v1}

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Any (valid) combination is unique.  
 — , [4][2] — , [4][1] — [2][2] v6 v4 v9

- Drop message red at v8
[0] : [1] :  
[2] : [3] : [4] :

{v8} {v2, v7, v9}
{v1, v4, v5, v6} {v3, v10} {v11, v12}

[0] : [1] : [2] :  
[3] : [4] : [5] : [6] :

{v12} {v10} {v6, v11}
{v5, v7} {v4, v8, v9} {v6, v11} {v1}

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Any (valid) combination is unique.  
 — , [4][2] — , [4][1] — [2][2] v6 v4 v9

- Drop message red at v8

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Any (valid) combination is unique.  
 — , [4][2] — , [4][1] — [2][2] v6 v4 v9

- Drop message red at v8

- is called a resolving set.{v12, v8}

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Any (valid) combination is unique.  
 — , [4][2] — , [4][1] — [2][2] v6 v4 v9

- Drop message red at v8

- is called a resolving set.{v12, v8}
- A resolving set is an ordered set

 s.t. any ,S = {s1, s2, . . } ⊆ V(G) u ≠ v ∈ V(G)
⟨d(u, s1); d(u, s2); . . ⟩ ≠ ⟨d(v, s1); d(v, s2); . . ⟩

Catch the Spy

- Drop message green at v12

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[1]

[1]

[1]

[0]

[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

- Any (valid) combination is unique.  
 — , [4][2] — , [4][1] — [2][2] v6 v4 v9

- Drop message red at v8

- is called a resolving set.{v12, v8}
- A resolving set is an ordered set

 s.t. any ,S = {s1, s2, . . } ⊆ V(G) u ≠ v ∈ V(G)
⟨d(u, s1); d(u, s2); . . ⟩ ≠ ⟨d(v, s1); d(v, s2); . . ⟩

- shortest distance from to d(u, si) = u si

Catch the Spy

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[1]

[1]

[1]
[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[1]

[1]

[1]
[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

met-dim() = size of smallest resolving setG

Metric Dimension
Input: Graph , int
Output: Does there exist a resolving set of
size at most ?

G k

k

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[1]

[1]

[1]
[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

met-dim() = size of smallest resolving setG

Metric Dimension
Input: Graph , int
Output: Does there exist a resolving set of
size at most ?

G k

k

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[1]

[1]

[1]
[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

met-dim() = size of smallest resolving setG

- Solution at one part of the graph, plays
important role in other part of the graph.  
Ex. resolves .  v12 v1, v2

Metric Dimension
Input: Graph , int
Output: Does there exist a resolving set of
size at most ?

G k

k

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[1]

[1]

[1]
[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

met-dim() = size of smallest resolving setG

- Solution at one part of the graph, plays
important role in other part of the graph.  
Ex. resolves .  v12 v1, v2

- This phenomenon makes the problem hard,  

Metric Dimension
Input: Graph , int
Output: Does there exist a resolving set of
size at most ?

G k

k

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

[0]

[1]

[1]

[1]
[2]

[2]

[2]

[2]

[3]

[3]

[4]
[4]

met-dim() = size of smallest resolving setG

- Solution at one part of the graph, plays
important role in other part of the graph.  
Ex. resolves .  v12 v1, v2

- This phenomenon makes the problem hard,  

- but also makes it ideal to obtain exotic
lower bounds.

Thm [FGKLIST (ICALP’24)]. The Metric Dimension problem on
bounded diameter graphs 
- admits -time algo, but
- does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

Thm [FGKLIST (ICALP’24)]. The Metric Dimension problem on
bounded diameter graphs 
- admits -time algo, but
- does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

First NP-Complete problems to admit such lower bounds 

Thm [FGKLIST (ICALP’24)]. The Metric Dimension problem on
bounded diameter graphs 
- admits -time algo, but
- does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

First NP-Complete problems to admit such lower bounds 

Earlier known results were -complete or -complete.  Σp
2 Πp

2

Thm [FGKLIST (ICALP’24)]. The Metric Dimension problem on
bounded diameter graphs 
- admits -time algo, but
- does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

First NP-Complete problems to admit such lower bounds 

Earlier known results were -complete or -complete.  Σp
2 Πp

2

How far can we push this result? 

Thm [FGKLIST (ICALP’24)]. The Metric Dimension problem on
bounded diameter graphs 
- admits -time algo, but
- does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

First NP-Complete problems to admit such lower bounds 

Earlier known results were -complete or -complete.  Σp
2 Πp

2

How far can we push this result? 

Holds for feedback vertex set, pathwidth, and treedepth.  

Thm [FGKLIST (ICALP’24)]. The Metric Dimension problem on
bounded diameter graphs 
- admits -time algo, but
- does not admit algo unless the ETH fails.

22𝒪(tw) ⋅ n𝒪(1)

22o(tw) ⋅ n𝒪(1)

First NP-Complete problems to admit such lower bounds 

Earlier known results were -complete or -complete.  Σp
2 Πp

2

How far can we push this result? 

Holds for feedback vertex set, pathwidth, and treedepth.  

How about vertex cover?

Our results

Thm. The Metric Dimension and Geodetic Set problems 
- admit -time algo, but
- do not admit algo unless the ETH fails.

2(vc)2 ⋅ n𝒪(1)

2o(vc2) ⋅ n𝒪(1)

Our results

Thm. The Metric Dimension and Geodetic Set problems 
- admit -time algo, but
- do not admit algo unless the ETH fails.

2(vc)2 ⋅ n𝒪(1)

2o(vc2) ⋅ n𝒪(1)

Thm. The Metric Dimension and Geodetic Set problems 
- admit kernel with vertices, but
- do not admit a kernel with vertices unless the ETH fails.

2𝒪(vc)

2o(vc)

Our results

Thm. The Metric Dimension and Geodetic Set problems 
- admit -time algo, but
- do not admit algo unless the ETH fails.

2(vc)2 ⋅ n𝒪(1)

2o(vc2) ⋅ n𝒪(1)

Thm. The Metric Dimension and Geodetic Set problems 
- admit kernel with vertices, but
- do not admit a kernel with vertices unless the ETH fails.

2𝒪(vc)

2o(vc)

Our results

(Split Contraction [ALSZ, STACS 2017])

Thm. The Metric Dimension and Geodetic Set problems 
- admit -time algo, but
- do not admit algo unless the ETH fails.

2(vc)2 ⋅ n𝒪(1)

2o(vc2) ⋅ n𝒪(1)

Thm. The Metric Dimension and Geodetic Set problems 
- admit kernel with vertices, but
- do not admit a kernel with vertices unless the ETH fails.

2𝒪(vc)

2o(vc)

Our results

(Split Contraction [ALSZ, STACS 2017])

(Edge Clique Cover [CPP, SODA’13], Biclique Cover [CIK, IPEC’16],  
Strong Met-Dim [FGKLIST, ICALP’24])

Geodetic Set
Input: Graph , int
Output: a subset of vertices s.t. for
any vertex is covered by a shortest path
between two vertices in

G k
∃? S k

u
S

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

Geodetic Set
Input: Graph , int
Output: a subset of vertices s.t. for
any vertex is covered by a shortest path
between two vertices in

G k
∃? S k

u
S

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

Geodetic Set
Input: Graph , int
Output: a subset of vertices s.t. for
any vertex is covered by a shortest path
between two vertices in

G k
∃? S k

u
S

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

Geodetic Set
Input: Graph , int
Output: a subset of vertices s.t. for
any vertex is covered by a shortest path
between two vertices in

G k
∃? S k

u
S

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

Geodetic Set
Input: Graph , int
Output: a subset of vertices s.t. for
any vertex is covered by a shortest path
between two vertices in

G k
∃? S k

u
S

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

Geodetic Set
Input: Graph , int
Output: a subset of vertices s.t. for
any vertex is covered by a shortest path
between two vertices in

G k
∃? S k

u
S

Solution at one part of the graph, plays
important role in other part of the graph.  
Ex. and covers a lot of vertices.v12 v1

v1 v2

v3 v4

v5

v6

v11
v12

v9

v8

v7

v10

[0]

[1]

[2]

[2]

[3]

[3][4]

[4]

[4]

[5]

[5]

[6]

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

S

V(G)∖S

y1

y2

y3

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If for in
ind-set, then any resolving set contains at least
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If for in
ind-set, then any resolving set contains at least
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with vertices ⇒ 2𝒪(vc)

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If for in
ind-set, then any resolving set contains at least
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with vertices ⇒ 2𝒪(vc)

Obs: Forced vertices + vertex cover S is a resolving set.

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If for in
ind-set, then any resolving set contains at least
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with vertices ⇒ 2𝒪(vc)

Obs: Forced vertices + vertex cover S is a resolving set.

 `free vertices’ is a resolving set is at most ⇒ vc

Thm. Metric Dimension admits kernel with vertices and
-time algo.

2𝒪(vc)

2(vc)2 ⋅ n𝒪(1)

Obs: If for in
ind-set, then any resolving set contains at least
two of them.

N(y1) = N(y2) = N(y3) y1, y2, y3 S

V(G)∖S

y1

y2

y3

 kernel with vertices ⇒ 2𝒪(vc)

Obs: Forced vertices + vertex cover S is a resolving set.

 `free vertices’ is a resolving set is at most ⇒ vc

 algorithm with desired running time⇒

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 varn

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 varn buckets with
 var each

n
n

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 varn buckets with
 var each

n
n

 sets with
 asst each

n
2 n

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 varn buckets with
 var each

n
n

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 varn buckets with
 var each

n
n

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 varn buckets with
 var each

n
n

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

Q: How to identify vertices
corresponding to assignments?

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

Q: How to identify vertices
corresponding to assignments?

Q: How to resolve following pairs? 
{C1, C2} {C′ 1, C2} …

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

Q: How to identify vertices
corresponding to assignments?

Q: How to resolve following pairs? 
{C1, C2} {C′ 1, C2} …

Q: How to control the vertex
cover? i.e. limit the interactions

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

Q: How to identify vertices
corresponding to assignments?

Q: How to resolve following pairs? 
{C1, C2} {C′ 1, C2} …

Q: How to control the vertex
cover? i.e. limit the interactions

Using bit encoding which cost
 extra verticeslog(set-size)

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

asst clause⊧

asst clause
/⊧

Q: How to identify vertices
corresponding to assignments?

Q: How to resolve following pairs? 
{C1, C2} {C′ 1, C2} …

Q: How to control the vertex
cover? i.e. limit the interactions

Using bit encoding which cost
 extra verticeslog(set-size)

Sperner Family

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)
Sperner Family: Collection of subsets of a universe such that
for any two sets in neither nor .

ℱ
A1, A2 ℱ A1 ⊆ A2 A2 ⊆ A1

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)
Sperner Family: Collection of subsets of a universe such that
for any two sets in neither nor .

ℱ
A1, A2 ℱ A1 ⊆ A2 A2 ⊆ A1

i.e. for any in A1 ∩ Ā2 ≠ ∅ A2 ℱ∖{A1}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)
Sperner Family: Collection of subsets of a universe such that
for any two sets in neither nor .

ℱ
A1, A2 ℱ A1 ⊆ A2 A2 ⊆ A1

Ex: Universe: for an integer and  
 — each set contains exactly elements.

{1,2,…,2p} p
ℱ p

i.e. for any in A1 ∩ Ā2 ≠ ∅ A2 ℱ∖{A1}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)
Sperner Family: Collection of subsets of a universe such that
for any two sets in neither nor .

ℱ
A1, A2 ℱ A1 ⊆ A2 A2 ⊆ A1

Ex: Universe: for an integer and  
 — each set contains exactly elements.

{1,2,…,2p} p
ℱ p
For , are sets in p = 3, A1 = {1,3,5} A2 = {1,3,6} ℱ

i.e. for any in A1 ∩ Ā2 ≠ ∅ A2 ℱ∖{A1}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)
Sperner Family: Collection of subsets of a universe such that
for any two sets in neither nor .

ℱ
A1, A2 ℱ A1 ⊆ A2 A2 ⊆ A1

Ex: Universe: for an integer and  
 — each set contains exactly elements.

{1,2,…,2p} p
ℱ p
For , are sets in p = 3, A1 = {1,3,5} A2 = {1,3,6} ℱ

For universe of size , we get of size 𝒪(p) ℱ 2𝒪(p)

i.e. for any in A1 ∩ Ā2 ≠ ∅ A2 ℱ∖{A1}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)
Sperner Family: Collection of subsets of a universe such that
for any two sets in neither nor .

ℱ
A1, A2 ℱ A1 ⊆ A2 A2 ⊆ A1

Ex: Universe: for an integer and  
 — each set contains exactly elements.

{1,2,…,2p} p
ℱ p
For , are sets in p = 3, A1 = {1,3,5} A2 = {1,3,6} ℱ

For universe of size , we get of size 𝒪(p) ℱ 2𝒪(p)

For , is of size , i.e. unique set for each asst.p = 𝒪(n) ℱ 2𝒪(n)

i.e. for any in A1 ∩ Ā2 ≠ ∅ A2 ℱ∖{A1}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}

If and , connect
to for some

a1 /⊧ C2 a2 ⊧ C2 C′ 2
Ā2 A2 ≠ A1

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}

If and , connect
to for some

a1 /⊧ C2 a2 ⊧ C2 C′ 2
Ā2 A2 ≠ A1

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}

If and , connect
to for some

a1 /⊧ C2 a2 ⊧ C2 C′ 2
Ā2 A2 ≠ A1

 iff ⇒ dist(a1, C′) = 3 a1 ⊧ C

3-SAT (with n var) to Metric Dimension with vc = 𝒪(n)

 sets with
 asst each

n
2 n

clauses

C1
C′ 1

C2
C′ 2

Replace direct connection via
universe of Sperner Family
Asst connected to a1 A1 = {1,3,5}

 are at dist two from any asst C1 C2

If , connect to a1 ⊧ C1 C′ 1 Ā1 = {2,4,6}

If and , connect
to for some

a1 /⊧ C2 a2 ⊧ C2 C′ 2
Ā2 A2 ≠ A1

 iff ⇒ dist(a1, C′) = 3 a1 ⊧ C
 ⇒ vc(G) = 𝒪(n)

Thm. Metric Dimension do not admit algo unless
the ETH fails.

2o(vc2) ⋅ n𝒪(1)

Thm. Metric Dimension do not admit algo unless
the ETH fails.

2o(vc2) ⋅ n𝒪(1)

Recall that `free vertices’ is a resolving set is at most vc

Thm. Metric Dimension do not admit algo unless
the ETH fails.

2o(vc2) ⋅ n𝒪(1)

Recall that `free vertices’ is a resolving set is at most vc

Hence, kernel with vertices will imply algo.2o(vc) 2o(vc2)

Thm. Metric Dimension do not admit algo unless
the ETH fails.

2o(vc2) ⋅ n𝒪(1)

Recall that `free vertices’ is a resolving set is at most vc

Hence, kernel with vertices will imply algo.2o(vc) 2o(vc2)

Thm. The Metric Dimension do not admit a kernel with
vertices unless the ETH fails.

2o(vc)

Thm. Metric Dimension do not admit algo unless
the ETH fails.

2o(vc2) ⋅ n𝒪(1)

Recall that `free vertices’ is a resolving set is at most vc

Hence, kernel with vertices will imply algo.2o(vc) 2o(vc2)

Thm. The Metric Dimension do not admit a kernel with
vertices unless the ETH fails.

2o(vc)

Any other (metric graph) NP-Complete problems that
admit such lower bounds?

Thank you

