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Introduction to Scheduling

Machines

Jobs

document.pdf

Objective

Provide a schedule that
prints all documents

as quickly as possible.

Machines can have different speeds or availabilities.

Jobs typically have processing times and sometimes weights, release dates, and due dates.

Objective e.g.: print as many documents as possible before their respective deadlines.
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Scheduling with Due Dates on a Single Machine

Machines

Single machine

Jobs

Processing time p,
due date d

Objective

Minimize number of jobs that
finish after due date

Jobs: p = 2, d = 4 p = 4, d = 6

p = 2, d = 7 p = 3, d = 5

σ1: p = 2, d = 4 p = 4, d = 6 p = 2, d = 7 p = 3, d = 5

σ2: p = 2, d = 4 p = 3, d = 5 p = 2, d = 7 p = 4, d = 6
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Background: Most Important Known Results

Single Machine Scheduling with Due Dates

Solvable in polynomial time. [Moore ’68]

Generalizations:

Adding weights:

Weakly NP-hard
(Knapsack).

[Karp ’72]

Solvable in
pseudo-polynomial time.

[Lawler & Moore ’69]

Adding more machines:

Weakly NP-hard for two
machines (Partition).

[Karp ’72]

Strongly NP-hard for
many machines (Bin
Packing).

[Garey & Johnson ’79]

Adding release dates:

Strongly NP-hard (Bin
Packing).

[Lenstra et al. ’77]
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Our Setting

Machines

Parallel identical machines

Jobs

Processing time p,
due date d , release date r ,

weight w .

Objective

Minimize weighted number of
jobs that finish after due date

All jobs have the same processing time!

Jobs (p = 3): r = 0, d = 7 r = 1, d = 6 r = 4, d = 7 r = 3, d = 6

Machine 1: r = 0, d = 7 idle r = 4, d = 7r = 3, d = 6

Machine 2: idle r = 1, d = 6 r = 3, d = 6r = 4, d = 7

Minimizing the Weighted Number of Tardy Jobs with Uniform Processing Times on Parallel Machines

“Our Scheduling Problem”
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Our Scheduling Problem: Motivation

Manufacturing processes, where:

Exact specifications have negligible effect on production time.

Specifications only become available at certain times.

Examples:

Etching of PCBs. Burn-in of ICs.
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Known Results

Theorem [Babtiste et al. ’00, ’04]

Our Scheduling Problem can be solved in nO(m) time, where n is the number of jobs
and m is the number of machines.

NP-hardness vs. polynomial-time solvability: Open!
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Reminder: Parameterized Algorithms and Complexity

Parameterized Problem

Each instance I is associated with a (small) parameter k .

Instance I k

Classical worst-case running time:

Instance I kInstance I k

Fixed-parameter tractability (FPT):

Instance I kInstance I k

Running time: f (k) · |I|O(1).

XP: Running time: |I|f (k).
Parameterized Hardness: W[1]-hard or W[2]-hard ⇒ presumably not in FPT.
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Our Results

Theorem 1 (Main Result)

Our Scheduling Problem is (strongly) NP-hard and W[2]-hard when parameterized by the
number m of machines, even if all jobs have the same weight.

Theorem 2

Our Scheduling Problem in XP when parameterized by the processing time p and in FPT
when parameterized by the combination of p and m.

We obtain this by giving alternative running time analyses of the algorithm by Baptiste et al.

Theorem 3

Our Scheduling Problem in FPT when parameterized by number of different release dates
or the number of different due dates.

We obtain this by giving an appropriate MILP formulation of the problem.
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Hardness of Our Scheduling Problem I

Reduction from Hitting Set.

Hitting Set

Input: A universe U = {u1,u2, . . . ,un}, a
family S = {S1,S2, . . . ,Sm} of subsets
of U, and an integer k .

Question: Is there a set X ⊆ U with |X | ≤ k
such that for all i ∈ [m]: Si ∩X ̸= /0.

Main Idea:

Use k machines, set p = 2n.

We want to enforce that each machine only has idle time at the beginning.

The idle time encodes an element of U that is selected for the set cover.

For each set Si we create |Si | “element jobs” and k −1 “dummy jobs” jobs.

We want to schedule k jobs for each set Si .
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Hardness of Our Scheduling Problem II

U = {u1,u2,u3,u4,u5,u6}, S1 = {u1,u2,u3}, S2 = {u3,u4,u5}, S3 = {u1,u5,u6}, k = 2

For each set Si , there is a “region” in the processing time.

The element job can only be placed in a specific interval. It creates no idle time if beginning
idle time encodes element.

Dummy jobs can be placed anywhere in the region.
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u3

p
p

p
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p
p

p
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Hardness of Our Scheduling Problem III

U = {u1,u2,u3,u4,u5,u6}, S1 = {u1,u2,u3}, S2 = {u3,u4,u5}, S3 = {u1,u5,u6}, k = 2

Solution: {u1,u3}.

1:

2:

u1 dummy u1

dummy u3 dummy

Problem: Index of initially selected element on a machine can be increased.

1:

2:

u2 u3 dummy

dummy dummy u1

Observation:
Whenever “cheating” happens, the index of at least one encoded element is increased. This
can only happen k · (n−1) times. ⇒ Repeat sketched construction k · (n−1)+1 times.
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can only happen k · (n−1) times. ⇒ Repeat sketched construction k · (n−1)+1 times.
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Conclusion

Summary:

We give an almost complete picture of the parameterized complexity
of Our Scheduling Problem wrt.

the processing time p,

the nr. w# of weights,

the nr. d# of due dates, and

the nr. r# of release dates.

Open Question:

Is Our Scheduling Problem in FPT when parameterized by
the processing time p?

Link to arXiv.

Thank you!
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