Modal Separation of Fixpoint Formulae

Jean Christoph Jung & Jedrzej Kotodziejski

Technical University of Dortmund

6 11 2025

Jena

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Separators

Separators

given mutually
inconsistent © = —¢’

Separators

given mutually a separator is a formula ¢
inconsistent = ¢’ st E Y and Y E

Separators

All models

given mutually a separator is a formula ¢
inconsistent = ¢’ st E Y and Y E

Separators

All models

given mutually a separator is a formula ¢
inconsistent = ¢’ st E Y and Y E

Separators

All models

given mutually a separator is a formula ¢
inconsistent = ¢’ st E Y and Y E

Separators

N\ (o

s

All models

given mutually a separator is a formula ¢
inconsistent = ¢’ st E Y and Y E

All models

Separators

A

Separators

All models
=

complicated
formulae ¢ = =/

Separators

All models
=

in expressive logic £

complicated
formulae ¢ = =/

Separators

All models
=

in expressive logic £

complicated simple ¢ s.t.
formulae ¢ = =/ oEYE —¢'?

Separators

n /
o ¥
K3
2 (8
< 2
in expressive logic £ in tamed logic LCL*
complicated simple ¢ s.t.

formulae ¢ = =/ oEYE —¢'?

Separators

All models
=

in expressive logic £ in tamed logic LCL*

simple explanation of

contradiction

complicated simple ¢ s.t.
formulae ¢ = =/ oEYE —¢'?

Example: labelled trees

Example: labelled trees

Example

. labelled trees

some path
starting in root
has labels in:

a’b

Example: labelled trees

every (finite) path

some path starting in root
starting in root has labels in

has labels in:
as 1abels In C—*
a'th

Example: labelled trees

every (finite) path

starting in root

—~
e
e
3
%
some path o
o

starting in root has labels in

has labels in:

a’b

C>l<

Decision problem: L-separability

Decision problem: L-separability

given: 0,0 € LT

Decision problem: L-separability

given: 0,0 € LT

s there a separator ¢ € L7

Separability generalizes definability

Separability generalizes definability

e For every formulae ¢ and

Separability generalizes definability

e For every formulae ¢ and

Separability generalizes definability

e For every formulae ¢ and

1) separates ¢ from —

Separability generalizes definability

e For every formulae ¢ and

1) separates ¢ from —

Z \
< >
\ /

@ and v are equivalent.

Separability generalizes definability

e For every formulae ¢ and

) separates ¢ from —

Z \
< >
\ /

@ and v are equivalent.

e Hence, L-definability: "is given ¢ expressible in L£?"

Separability generalizes definability

e For every formulae ¢ and

) separates ¢ from —

Z \
< >
\ /

@ and v are equivalent.

e Hence, L-definability: "is given ¢ expressible in L£?"

e is a special case of L-separability.

The logics £ and L™

The logics £ and L™

L = modal logic ML

The logics £ and L™

L = modal logic ML

syntax:

The logics £ and L™

L = modal logic ML

syntax:

alp|eVy | Op

The logics £ and L™

L = modal logic ML

syntax:

alp|eVy | Op

semantics

The logics £ and L™

L = modal logic ML

syntax:

alp|eVy | Op

formulae interpreted in

semantics points of labelled
directed graphs

The logics £ and L™

L = modal logic ML

syntax:

al-p|pVy | Op

propositions a € At

formulae interpreted in

semantics points of labelled
directed graphs

The logics £ and L™

L = modal logic ML

syntax:

al-p|pVy | Op

propositions a € At @ true in some child

\ / formulae interpreted in
semantics points of labelled

directed graphs

The logics £ and L™

L = modal logic ML

syntax:

al-p|pVy | Op

propositions a € At @ true in some child

\ / formulae interpreted in
semantics points of labelled

directed graphs

LT = u-ML = ML + fixpoints

The logics £ and L™

L = modal logic ML

syntax:

al=p oV |Op | x| pxe

propositions a € At @ true in some child

\ / formulae interpreted in
semantics points of labelled

directed graphs

LT = u-ML = ML + fixpoints

The semantics of u-ML = ML + fixpoints

The semantics of u-ML = ML + fixpoints

1-ML

Automata

Translations

Translations

1-ML formulae parity automata

Translations

EXPONENTIAL

1-ML formulae parity automata

Translations

EXPONENTIAL

1-ML formulae parity automata

EXPONENTIAL

Translations

EXPONENTIAL

u-ML formulae ——= parity automata

EXPONENTIAL

The question: modal separability

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example

p = pux.a N\ <(bVx)

“some path has labels from a™b"

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example

p = pux.a N\ <(bVx)

“some path has labels from a™b"

¢ = vy.cA\OQy

“all (finite) paths belong to c*”

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example

p = pux.a N\ <(bVx)

“some path has labels from a™b"

Y = a

“root satisfies a"

¢ = vy.cA\OQy

“all (finite) paths belong to c*”

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example Non-example

p = pux.a N\ <(bVx)

“some path has labels from a™b"

Y = a

“root satisfies a"

¢ = vy.cA\OQy

“all (finite) paths belong to c*”

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example Non-example
@ = ux.a A <(bV x) © = wr = ux.0x
“some path has labels from a™b" “no infinite paths”
P =a

“root satisfies a"

¢ = vy.cA\OQy

“all (finite) paths belong to c*”

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example Non-example
@ = ux.a A <(bV x) © = wr = ux.0x
“some path has labels from a™b" “no infinite paths”
P =a

“root satisfies a"

gp’ = vy.c/\ Oy g&’ = TWYWF

“all (finite) paths belong to c*” “there is an infinite path”

The question: modal separability

e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example Non-example
@ = ux.a A <(bV x) © = wr = ux.0x
“some path has labels from a™b" “no infinite paths”
= a ¢ entails no modal formulae!

“root satisfies a"

gp’ = vy.c/\ Oy g&’ = TWYWF

“all (finite) paths belong to c*” “there is an infinite path”

The answer:

The answer:

all models words | binary trees C]i;arri; t;e;

ML-definability ExpTime PSpace ExpTime ExpTime
ML-separability ExpTime PSpace ExpTime | 2-ExpTime

separator construction | double exp. | single exp. | double exp. | triple exp.
interpolant existence always always always | coNExpTime

for modal logic

The answer:

all models words | binary trees C]i;arri; t;e;

ML-definability ExpTime PSpace ExpTime ExpTime
ML-separability ExpTime PSpace ExpTime | 2-ExpTime

separator construction | double exp. | single exp. | double exp. | triple exp.
interpolant existence always always always | coNExpTime

for modal logic

e all the complexity results are completeness results.

The answer:

all models words | binary trees C]i::ri; t;e;

ML-definability ExpTime PSpace ExpTime ExpTime
ML-separability ExpTime PSpace ExpTime | 2-ExpTime

separator construction | double exp. | single exp. | double exp. | triple exp.
interpolant existence always always always | coNExpTime

for modal logic

e all the complexity results are completeness results.

e words mean unary trees: words with successor relation, no order.

The answer:

all models words | binary trees C]i::ri; t;e;

ML-definability ExpTime PSpace ExpTime ExpTime
ML-separability ExpTime PSpace ExpTime | 2-ExpTime

separator construction | double exp. | single exp. | double exp. | triple exp.
interpolant existence always always always | coNExpTime

for modal logic

e all the complexity results are completeness results.

e words mean unary trees: words with successor relation, no order.

e in all cases trees are unordered.

What's hot:

What's hot:

o ML-separability is 2-ExpTime-complete over ternary trees...

What's hot:

o ML-separability is 2-ExpTime-complete over ternary trees...

e . but only ExpTime-complete over binary trees.

What's hot:

o ML-separability is 2-ExpTime-complete over ternary trees...
e . but only ExpTime-complete over binary trees.

e Craig interpolants (type of separators) for ML always exist over binary trees...

What's hot:

ML-separability is 2-ExpTime-complete over ternary trees...
...but only ExpTime-complete over binary trees.
Craig interpolants (type of separators) for ML always exist over binary trees...

...but over ternary trees deciding its existence is coNExpTime-complete.

What's hot:

ML-separability is 2-ExpTime-complete over ternary trees...
...but only ExpTime-complete over binary trees.
Craig interpolants (type of separators) for ML always exist over binary trees...

...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees

are harder than the binary onesl!

What's hot:

o ML-separability is 2-ExpTime-complete over ternary trees...
e . but only ExpTime-complete over binary trees.
e Craig interpolants (type of separators) for ML always exist over binary trees...

e .. .but over ternary trees deciding its existence is coNExpTime-complete.

I I I Ternary (and higher arity) trees I I I
! 11 are harder than the binary ones! 1 11

Behind separability

Behind separability

no modal separator for ¢ and ¢’

Behind separability

no modal separator for ¢ and ¢’

Z \
< >
\ /

for every n € N there are: p 5 M ~" M' = ¢/

Behind separability

no modal separator for ¢ and '

Z \
< >
\ /

for every n € N there are: p 5 M ~" M' = ¢/

Sp: Y :Sp/

Behind separability

no modal separator for ¢ and '

Z \
< >
\ /

for every n € N there are: p 5 M ~" M' = ¢/

n

/
(70 p— Y — Sp
bisimilar up
to depth n

M M’

Behind separability

no modal separator for ¢ and ¢’

Z \
< >
\ /

!
Z \
< >
\ /

for every n € N there are: p 5 M =" M' = ¢/

Behind separability

no modal separator for ¢ and ¢’

bisimilar up
X - to depth n

for every n € N there are: p 5 M ~" M' = ¢/

!
Z \
< >
\ /

for every n € N there are: p 5 M =" M' = ¢/

Behind separability

no modal separator for ¢ and '

bisimilar up
X - to depth n

for every n € N there are: p 5 M ~" M' = ¢/

!
Z \
< >
\ /

for every n € N there are: p 5 M =" M' = ¢/

isomorphic up
to depth n

Behind separability

no modal separator for ¢ and '

bisimilar up
X - to depth n

for every n € N there are: p 5 M ~" M' = ¢/
all models
\ ?

Z \
< >
\ /

for every n € N there are: p 5 M =" M' = ¢/

isomorphic up
to depth n

Behind separability

no modal separator for ¢ and '

bisimilar up
X - to depth n

for every n € N there are: p 5 M ~" M' = ¢/
all models
\ 7

finite trees ;7 " A
< >
\ /

for every n € N there are: p 5 M =" M' = ¢/

isomorphic up
to depth n

Behind separability

no modal separator for ¢ and '

bisimilar up
X - to depth n

for every n € N there are: p 5 M ~" M' = ¢/
all models \
finite trees ;7 " A
/ << >
binary trees

for every n € N there are: p 5 M =" M' = ¢/

isomorphic up
to depth n

Behind separability

no modal separator for ¢ and '

bisimilar up
X - to depth n

for every n € N there are: p 5 M ~" M' = ¢/
all models \
finite trees ;7 " A
/ << >
binary trees

for every n € N there are: p 5 M =" M' = ¢/

_——— X ternary trees

isomorphic up
to depth n

Ternary case: lower bound

Ternary case: lower bound

Turing machine T with

2" memory cells

Ternary case: lower bound

Turing machine T with

configurations of T

2" memory cells /\

A A

< Y <

Ternary case: lower bound

Turing machine T with configurations of T

2" memory cells /\

a8 A N Ve A “~

O—eeo - - 0O— o o e —0—eoe00 - - - 0O
1

(05 = = IR SVg S o o e —0O—eoe00 - - 0O

i-th copy: i-th cell updated correctly
/ \

< A N r A ~N
i

O—e—-o0-o - —0O—> —0O—0—o0-o N)

Mo

¢’ enforces M’

Ternary case: lower bound

Turing machine T with configurations of T

2" memory cells /\

a8 A N Ve A “~

O—eeo - - 0O— o o e —0—eoe00 - - - 0O
1

(05 = = JUIIN S'g =Y o o e —0O—eoe00 - - 0O

i-th copy: i-th cell updated correctly
/ \

r - ™~ - - o
i

(O = =] - —0O—> —0O—0—o0-o N)

¢ enforces M

M o—

Mo

¢’ enforces M’

Ternary case: lower bound

Turing machine T with configurations of T

2" memory cells /\

a8 A N Ve A “~
—0O—90o090 - o—(0O0— e o o —0—ee090 - - O
1
i-th copy: i-th cell updated correctly
/ \
r - ~N - - o
I
O—e-o-o - —0O—> —QO—eo—o-o - 0O

¢ enforces M

M o—

Mo

¢’ enforces M’

Ternary case: lower bound

Turing machine T with configurations of T

2" memory cells /\

a8 A N Ve A “~
—0O—90o090 - o—(0O0— e o o —0—ee090 - - O
.’ not
separable
1
(05 = = JUIIN S'g =Y o o e —0O—eoe00 - - 0O
i-th copy: i-th cell updated correctly
/ \
i
(O = =] - —0O—> —0O—0—o0-o N)

Ternary case: lower bound

Turing machine T with

configurations of T

¢ enforces M 2" memory cells o
r A N Ve A “~
M '()—) e o o —).Q—.—H I ._O_) e o o _)O_H_. « o ._O
: ©,¢' not
: L separable
¢ 1AW
v 1\ O-eee--- O o« o e —0—e-00 - - 0O
i-th copy: i-th cell updated correctly
M/ ‘O “ “\ — ——————
\‘ - A ~ ~ " AL -
‘\‘O—.—H"'.—()—) e o o —0e9o9e9 - - 0O
¢’ enforces M’ N
O—e—0-o —0—>

o o o e o o _)O_H_....._O
2[7

Ternary case: lower bound

Turing machine T with configurations of T

¢ enforces M 2" memory cells /\

A A
M o— —p—ooo - —0— . —0O—eeo0 - - O
l" 'III":' /
! ©,p" not
: . <—> T hasarun
; D separable
¢ 1AW
|‘ |‘ O+H P ._()_) e o o —)()—H—. RS ._O
i-th copy: i-th cell updated correctly
M’ o Lo — —
\ Ve A ~ Ve A ~
‘\‘ O—-eoo090 - - o-0O— o o o —30O—e—0-0 - 0O
¢’ enforces M’ N

Ternary case: lower bound

Ternary case: lower bound

e for a given ExpSpace Turing machine T we construct ¢,¢’ such that:

Ternary case: lower bound

e for a given ExpSpace Turing machine T we construct ¢,¢’ such that:

P, not
separable

<——> T hasarun

Ternary case: lower bound

e for a given ExpSpace Turing machine T we construct ¢,¢’ such that:

P, not
separable

<——> T hasarun

e idea implemented using gadgets possible over ternary, but not binary trees

Ternary case: lower bound

e for a given ExpSpace Turing machine T we construct ¢,¢’ such that:

P, not
separable

<——> T hasarun

e idea implemented using gadgets possible over ternary, but not binary trees

e with more effort: alternating ExpSpace machines

Ternary case: lower bound

e for a given ExpSpace Turing machine T we construct ¢,¢’ such that:

P, not
separable

<——> T hasarun

e idea implemented using gadgets possible over ternary, but not binary trees
e with more effort: alternating ExpSpace machines

e conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: upper bound

Ternary case: upper bound

e assume: tree M = (V, E), every node with at most ternary branching

Ternary case: upper bound

e assume: tree M = (V, E), every node with at most ternary branching

e and a nondeterministic parity automaton A = (Q, 9, g, rank)

Ternary case: upper bound

e assume: tree M = (V, E), every node with at most ternary branching
e and a nondeterministic parity automaton A = (Q, 9, g, rank)

e we define a game G(M, A) played between Jve and Vdam such that:

Ternary case: upper bound

e assume: tree M = (V, E), every node with at most ternary branching
e and a nondeterministic parity automaton A = (Q, 9, g, rank)

e we define a game G(M, A) played between Jve and Vdam such that:

dve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary ' = A

Ternary case: upper bound

e assume: tree M = (V, E), every node with at most ternary branching
e and a nondeterministic parity automaton A = (Q, 9, g, rank)

e we define a game G(M, A) played between Jve and Vdam such that:

Jve wins G(M, A) }: A
<

M is a bisimulation quotient

of some ternary N = A

Ternary case: upper bound

e assume: tree M = (V, E), every node with at most ternary branching
e and a nondeterministic parity automaton A = (Q, 9, g, rank)

e we define a game G(M, A) played between Jve and Vdam such that:

Y
------------ > I E P
Jve wins G(M, A) }: A
— functional
bisimulation

M is a bisimulation quotient

of some ternary N = A

Ternary case: upper bound

Ternary case: upper bound

o for M =(V,E)and A =(Q,0,q,rank):

Ternary case: upper bound

o for M =(V,E)and A =(Q,0,q,rank):

Jve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A

Ternary case: upper bound

o for M =(V,E)and A =(Q,0,q,rank):

Jve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A

e positions: V x @

Ternary case: upper bound

o for M =(V,E)and A =(Q,0,q,rank):

Jve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A

e positions: V x @
e from (v,q) Jve chooses a transition {q1,92,93} =D € §(q, color(v))

e and a surjective map h: D — W where W is the set of children of v.

Ternary case: upper bound

o for M =(V,E)and A =(Q,0,q,rank):

Jve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A

e positions: V x @

e from (v,q) Jve chooses a transition {q1,92,93} =D € §(q, color(v))

e and a surjective map h: D — W where W is the set of children of v.
e Vdam responds with a choice of g; €D

e the next round starts in (h(q;),q;).

Ternary case: upper bound

o for M =(V,E)and A =(Q,0,q,rank):

Jve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A

e positions: V x @

e from (v,q) Jve chooses a transition {q1,92,93} =D € §(q, color(v))

e and a surjective map h: D — W where W is the set of children of v.
e Vdam responds with a choice of g; €D

e the next round starts in (h(q;),q;).

e Parity game: ranks inherited from A.

Ternary case: upper bound

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M
<
dve wins G(M, A)
<

M is a bisimulation quotient

of some ternary N = A

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M
<
dve wins G(M, A)
<

M is a bisimulation quotient

of some ternary N = A

e _..and use it to decide separation.

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M
<
dve wins G(M, A)
<

M is a bisimulation quotient

of some ternary N = A

e _..and use it to decide separation.

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M
<~
dve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A SO

e _..and use it to decide separation.

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M
< U
dve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A SO

e _..and use it to decide separation.

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M [P
<
Jve wins G(M, A)
<

M is a bisimulation quotient /

of some ternary N = A SO SO

e _..and use it to decide separation.

Ternary case: upper bound

e for A we construct exponentially-sized B such that for all M:

B accepts M [P
<
Jve wins G(M, A)
<

M is a bisimulation quotient /

of some ternary N = A SO ? SO

e _..and use it to decide separation.

Thank youl!

Relativization

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

> D

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely
branching
models

> D

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely 0 = owr
branching
models

> D

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely 0= pwr
branching , 4 |
models \ Fini
Inite
> D

trees

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely 0= pwr
branching , J1_ \ |
models \ Fini
Inite
> D

trees

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely 0= pwr
branching , JI_ \ | |
models \ Fini
Inite
> D

trees

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely
branching
models

Relativization

> D

0 = owr

Finite
trees

e Then: v separates ¢ from ¢’ over D iff it separates © A 6 from ¢’ A 6 over C.

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely
branching
models

Relativization

> D

0 = owr

Finite
trees

e Then: v separates ¢ from ¢’ over D iff it separates © A 6 from ¢’ A 6 over C.

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely
branching
models

Relativization

> D

0 = owr

Finite
trees

e Then: v separates ¢ from ¢’ over D iff it separates © A 6 from ¢’ A 6 over C.

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely
branching
models

Relativization

> D

0 = owr

Finite
trees

e Then: v separates ¢ from ¢’ over D iff it separates © A 6 from ¢’ A 6 over C.

e Example: v separates ¢ from ¢’ over finite words

o iff it separates A pwr from ¢’ A owr over (arbitrary) words

Relativization

e Assume classess of models C and D and formula @ such that

e fdefinesDinC: MeDiff MeCand M = .

Finitely 0 = owr
branching
models Fini
Inite
trees

e Then: v separates ¢ from ¢’ over D iff it separates © A 6 from ¢’ A 6 over C.
e Example: v separates ¢ from ¢’ over finite words

o iff it separates A pwr from ¢’ A owr over (arbitrary) words

