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The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!
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all models words binary trees
d -ary trees
for d ≥ 3

ML-definability ExpTime PSpace ExpTime ExpTime
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interpolant existence
for modal logic

always always always coNExpTime

• all the complexity results are completeness results.

• words mean unary trees: words with successor relation, no order.

• in all cases trees are unordered.
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Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
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• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!
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• assume: tree M = (V ,E ), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)
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M is a bisimulation quotient

of some ternary N |= A
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Ternary case: upper bound

• for M = (V ,E ) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.
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Thank you!



Relativization

• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.
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Finitely
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θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words
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