Modal Separation of Fixpoint Formulae

Jean Christoph Jung & Jędrzej Kołodziejski Technical University of Dortmund

> 6 III 2025 Jena

> > **Powered by** BeamerikZ

Separators

given mutually inconsistent $\varphi \models \neg \varphi'$

Separators

Separators

 $\begin{array}{c} \textbf{complicated} \\ \textbf{formulae} \ \varphi \models \neg \varphi' \end{array}$


```
in expressive logic \mathcal{L}^+

complicated

formulae \varphi \models \neg \varphi'
```


in expressive logic
$$\mathcal{L}^+$$

complicated
formulae $\varphi \models \neg \varphi'$

simple ψ s.t. $\varphi \models \psi \models \neg \varphi'$?

complicated formulae $\varphi \models \neg \varphi'$

Decision problem: *L*-separability

Decision problem: *L*-separability

given: $\varphi, \varphi' \in \mathcal{L}^+$

Decision problem: *L*-separability

given: $\varphi, \varphi' \in \mathcal{L}^+$

is there a separator $\psi \in \mathcal{L}$?

• For every formulae arphi and ψ :

• For every formulae arphi and ψ :

• For every formulae φ and ψ :

 ψ separates φ from $\neg \varphi$

• For every formulae φ and ψ :

 ψ separates φ from $\neg \varphi$

arphi and ψ are equivalent.

• For every formulae arphi and ψ :

 ψ separates φ from $\neg \varphi$

arphi and ψ are equivalent.

• Hence, \mathcal{L} -definability: "is given φ expressible in \mathcal{L} ?"

• For every formulae arphi and ψ :

 ψ separates φ from $\neg \varphi$

arphi and ψ are equivalent.

- Hence, \mathcal{L} -definability: 'is given φ expressible in \mathcal{L} ?''
- is a special case of \mathcal{L} -separability.

 $\mathcal{L} = \text{modal logic ML}$

$\mathcal{L} = \text{modal logic ML}$

syntax:

$\mathcal{L} = \text{modal logic ML}$

syntax:

 $\mathbf{a} \mid \neg \varphi \mid \varphi \lor \psi \mid \Diamond \varphi$

$\mathcal{L} = \text{modal logic ML}$

syntax:

$\mathbf{a} \mid \neg \varphi \mid \varphi \lor \psi \mid \diamondsuit \varphi$

semantics

$\mathcal{L} = \text{modal logic ML}$

syntax:

$\mathbf{a} \mid \neg \varphi \mid \varphi \lor \psi \mid \Diamond \varphi$

formulae interpreted in points of labelled directed graphs

semantics

syntax:

 $\mathbf{a} \mid \neg \varphi \mid \varphi \lor \psi \mid \Diamond \varphi$

formulae interpreted in points of labelled directed graphs

 $\mathcal{L}^+ = \mu$ -ML = ML + fixpoints

The logics \mathcal{L} and \mathcal{L}^+ $\mathcal{L} = \text{modal logic ML}$ syntax: $a \mid \neg \varphi \mid \varphi \lor \psi \mid \Diamond \varphi \mid x \mid \mu x. \varphi$ atomic φ true in some child propositions $a \in At$ formulae interpreted in points of labelled semantic directed graphs $\mathcal{L}^+ = \mu$ -ML = ML + fixpoints

The semantics of μ -ML = ML + fixpoints

The semantics of μ -ML = ML + fixpoints

 μ -ML

Automata

parity automata

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

- Given contradictory φ and φ' in μ -ML...
- ... is there a separator ψ in ML? Can it be computed?

Example

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

''some path has labels from $\mathsf{a}^+\mathsf{b}''$

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

"some path has labels from a^+b "

$$\varphi' = \nu y.c \land \Box y$$

"all (finite) paths belong to c^{*}

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

''some path has labels from a^+b ''

$$\psi = \mathsf{a}$$
 "root satisfies a"

$$\varphi' = \nu y.\mathsf{c} \land \Box y$$

"all (finite) paths belong to c^{\ast}

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

"some path has labels from a^+b "

$$\psi = \mathbf{a}$$
 "root satisfies a"

$$\varphi' = \nu y.\mathsf{c} \land \Box y$$

"all (finite) paths belong to c^*

Non-example

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

''some path has labels from $\mathsf{a}^+\mathsf{b}''$

$$\psi = \mathsf{a}$$
 "root satisfies a'

$$\varphi' = \nu y.c \land \Box y$$

''all (finite) paths belong to $c^{\ast \prime \prime}$

Non-example

$$\varphi = \varphi_{\mathsf{WF}} = \mu \mathbf{x}.\Box \mathbf{x}$$

"no infinite paths"

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

"some path has labels from a^+b "

$$\psi = a$$
 "root satisfies a"

$$\varphi' = \nu y.\mathsf{c} \land \Box y$$

"all (finite) paths belong to $\mathsf{c}^{*"}$

Non-example

$$\varphi = \varphi_{\mathsf{WF}} = \mu x. \Box x$$

"no infinite paths"

$$\varphi' = \neg \varphi_{\mathsf{WF}}$$

"there is an infinite path"

- Given contradictory φ and φ' in $\mu\text{-}\mathsf{ML}...$
- ... is there a separator ψ in ML? Can it be computed?

Example

 $\varphi = \mu x.a \land \diamondsuit(b \lor x)$

''some path has labels from $\mathsf{a}^+\mathsf{b}''$

$$\psi = \mathsf{a}$$
 "root satisfies a'

$$\varphi' = \nu y.c \land \Box y$$

"all (finite) paths belong to c^*

Non-example

$$\varphi = \varphi_{\mathsf{WF}} = \mu \mathbf{x}.\Box \mathbf{x}$$

"no infinite paths"

arphi entails no modal formulae!

 $\varphi' = \neg \varphi_{\mathsf{WF}}$

"there is an infinite path"

	all models	words	binary trees	d -ary trees for $d \ge 3$
ML-definability	ExpTime	PSpace	ExpTime	ExpTime
ML-separability	ExpTime	PSpace	ExpTime	2-ExpTime
separator construction	double exp.	single exp.	double exp.	triple exp.
interpolant existence for modal logic	always	always	always	coNExpTime

	all models	words	binary trees	d -ary trees for $d \ge 3$
ML-definability	ExpTime	PSpace	ExpTime	ExpTime
ML-separability	ExpTime	PSpace	ExpTime	2-ExpTime
separator construction	double exp.	single exp.	double exp.	triple exp.
interpolant existence for modal logic	always	always	always	coNExpTime

• all the complexity results are *completeness* results.

	all models	words	binary trees	d -ary trees for $d \ge 3$
ML-definability	ExpTime	PSpace	ExpTime	ExpTime
ML-separability	ExpTime	PSpace	ExpTime	2-ExpTime
separator construction	double exp.	single exp.	double exp.	triple exp.
interpolant existence for modal logic	always	always	always	coNExpTime

- all the complexity results are *completeness* results.
- words mean unary trees: words with successor relation, no order.

	all models	words	binary trees	d -ary trees for $d \ge 3$
ML-definability	ExpTime	PSpace	ExpTime	ExpTime
ML-separability	ExpTime	PSpace	ExpTime	2-ExpTime
separator construction	double exp.	single exp.	double exp.	triple exp.
interpolant existence for modal logic	always	always	always	coNExpTime

- all the complexity results are *completeness* results.
- words mean unary trees: words with successor relation, no order.
- in all cases trees are unordered.

• ML-separability is 2-ExpTime-complete over ternary trees...

- ML-separability is 2-ExpTime-complete over ternary trees...
- ...but only ExpTime-complete over binary trees.

- ML-separability is 2-ExpTime-complete over ternary trees...
- ...but only ExpTime-complete over binary trees.
- Craig interpolants (type of separators) for ML always exist over binary trees...

- ML-separability is 2-ExpTime-complete over ternary trees...
- ...but only ExpTime-complete over binary trees.
- Craig interpolants (type of separators) for ML always exist over binary trees...
- ...but over ternary trees deciding its existence is coNExpTime-complete.

- ML-separability is 2-ExpTime-complete over ternary trees...
- ...but only ExpTime-complete over binary trees.
- Craig interpolants (type of separators) for ML always exist over binary trees...
- ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees are harder than the binary ones!

- ML-separability is 2-ExpTime-complete over ternary trees...
- ...but only ExpTime-complete over binary trees.
- Craig interpolants (type of separators) for ML always exist over binary trees...
- ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees are harder than the binary ones!

Behind separability

Behind separability

<u>no</u> modal separator for φ and φ'

Behind separability

<u>no</u> modal separator for φ and φ'

for every $n \in \mathbb{N}$ there are: $\varphi = |\mathcal{M} \sim^n \mathcal{M}' \models \varphi'$

for every $n \in \mathbb{N}$ there are: $\varphi = \mid \mathcal{M} \sim^n \mathcal{M}' \models \varphi'$

for every $n \in \mathbb{N}$ there are: $\varphi = \mid \mathcal{M} \sim^n \mathcal{M}' \models \varphi'$

<u>no</u> modal separator for φ and φ'

for every $n \in \mathbb{N}$ there are: $\varphi = |\mathcal{M} \sim^n \mathcal{M}' \models \varphi'$

for every $n \in \mathbb{N}$ there are: $\varphi = \mathcal{M} \cong^n \mathcal{M}' \models \varphi'$

<u>no</u> modal separator for arphi and arphi'

for every $n \in \mathbb{N}$ there are: $\varphi = \mathcal{M} \cong^n \mathcal{M}' \models \varphi'$

 $\frac{\text{Turing machine } T \text{ with }}{2^n \text{ memory cells}}$

i-th copy: *i*-th cell updated correctly

• for a given ExpSpace Turing machine T we construct φ, φ' such that:

• for a given ExpSpace Turing machine T we construct φ, φ' such that:

• for a given ExpSpace Turing machine T we construct φ, φ' such that:

• idea implemented using gadgets possible over ternary, but not binary trees

• for a given ExpSpace Turing machine T we construct φ, φ' such that:

- idea implemented using gadgets possible over ternary, but not binary trees
- with more effort: alternating ExpSpace machines

• for a given ExpSpace Turing machine T we construct φ, φ' such that:

- idea implemented using gadgets possible over ternary, but not binary trees
- with more effort: alternating ExpSpace machines
- conclusion: modal separation is 2-ExpTime-hard over ternary trees!

• assume: tree $\mathcal{M} = (V, E)$, every node with at most ternary branching

- assume: tree $\mathcal{M} = (V, E)$, every node with at most ternary branching
- and a nondeterministic parity automaton $\mathcal{A} = (Q, \delta, q_I, \text{rank})$

- assume: tree $\mathcal{M} = (V, E)$, every node with at most ternary branching
- and a nondeterministic parity automaton $\mathcal{A} = (Q, \delta, q_I, \text{rank})$
- we define a game $\mathcal{G}(\mathcal{M}, \mathcal{A})$ played between $\exists ve and \forall dam such that:$

- assume: tree $\mathcal{M} = (V, E)$, every node with at most ternary branching
- and a nondeterministic parity automaton $\mathcal{A} = (Q, \delta, q_I, \text{rank})$
- we define a game $\mathcal{G}(\mathcal{M}, \mathcal{A})$ played between $\exists ve and \forall dam such that:$

 $\exists ve \text{ wins } \mathcal{G}(\mathcal{M}, \mathcal{A}) \\ \longleftrightarrow \\ \mathcal{M} \text{ is a } \underline{bisimulation \ quotient} \\ \text{ of some ternary } \mathcal{N} \models \mathcal{A} \\ \end{cases}$

- assume: tree $\mathcal{M} = (V, E)$, every node with at most ternary branching
- and a nondeterministic parity automaton $\mathcal{A} = (Q, \delta, q_I, \text{rank})$
- we define a game $\mathcal{G}(\mathcal{M}, \mathcal{A})$ played between $\exists ve and \forall dam such that:$

- assume: tree $\mathcal{M} = (V, E)$, every node with at most ternary branching
- and a nondeterministic parity automaton $\mathcal{A} = (Q, \delta, q_I, \text{rank})$
- we define a game $\mathcal{G}(\mathcal{M}, \mathcal{A})$ played between $\exists ve and \forall dam such that:$

• for $\mathcal{M} = (V, E)$ and $\mathcal{A} = (Q, \delta, q_I, \text{rank})$:

• for $\mathcal{M} = (V, E)$ and $\mathcal{A} = (Q, \delta, q_I, \text{rank})$:

 $\exists ve wins \mathcal{G}(\mathcal{M}, \mathcal{A})$

$$\iff$$

 \mathcal{M} is a *bisimulation quotient* of some ternary $\mathcal{N} \models \mathcal{A}$

• for $\mathcal{M} = (V, E)$ and $\mathcal{A} = (Q, \delta, q_I, \text{rank})$:

 $\exists ve wins \mathcal{G}(\mathcal{M}, \mathcal{A})$

$$\iff$$

 \mathcal{M} is a *bisimulation quotient* of some ternary $\mathcal{N} \models \mathcal{A}$

• positions: $V \times Q$

• for $\mathcal{M} = (V, E)$ and $\mathcal{A} = (Q, \delta, q_I, \text{rank})$:

 $\exists ve \text{ wins } \mathcal{G}(\mathcal{M}, \mathcal{A}) \\ \longleftrightarrow \\ \mathcal{M} \text{ is a } \underline{bisimulation \ quotient} \\ \text{ of some ternary } \mathcal{N} \models \mathcal{A} \\ \end{cases}$

- positions: $V \times Q$
- from $(v,q) \exists ve \text{ chooses a transition } \{q_1,q_2,q_3\} = D \in \delta(q, \operatorname{color}(v))$
- and a surjective map $h: D \to W$ where W is the set of children of v.
• for $\mathcal{M} = (V, E)$ and $\mathcal{A} = (Q, \delta, q_I, \text{rank})$:

 $\exists ve \text{ wins } \mathcal{G}(\mathcal{M}, \mathcal{A}) \\ \Longleftrightarrow \\ \mathcal{M} \text{ is a } \underline{bisimulation \ quotient} \\ \text{ of some ternary } \mathcal{N} \models \mathcal{A} \\ \end{cases}$

- positions: V imes Q
- from $(v,q) \exists ve \text{ chooses a transition } \{q_1,q_2,q_3\} = D \in \delta(q, \operatorname{color}(v))$
- and a surjective map $h: D \to W$ where W is the set of children of v.
- \forall dam responds with a choice of $q_i \in D$
- the next round starts in $(h(q_i),q_i)$.

• for $\mathcal{M} = (V, E)$ and $\mathcal{A} = (Q, \delta, q_I, \text{rank})$:

 $\exists ve \text{ wins } \mathcal{G}(\mathcal{M}, \mathcal{A}) \\ \longleftrightarrow \\ \mathcal{M} \text{ is a } \underline{bisimulation \ quotient} \\ \text{ of some ternary } \mathcal{N} \models \mathcal{A} \\ \end{cases}$

- positions: V imes Q
- from $(v,q) \exists ve \text{ chooses a transition } \{q_1,q_2,q_3\} = D \in \delta(q, \operatorname{color}(v))$
- and a surjective map $h: D \to W$ where W is the set of children of v.
- \forall dam responds with a choice of $q_i \in D$
- the next round starts in $(h(q_i), q_i)$.
- Parity game: ranks inherited from *A*.

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

 $\mathcal{B} \text{ accepts } \mathcal{M}$ \iff $\exists ve \text{ wins } \mathcal{G}(\mathcal{M}, \mathcal{A})$ \iff $\mathcal{M} \text{ is a bisimulation quotient}$

of some ternary $\mathcal{N} \models \mathcal{A}$

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

 $\mathcal{B} \text{ accepts } \mathcal{M}$ \iff $\exists \text{ve wins } \mathcal{G}(\mathcal{M}, \mathcal{A})$ \iff $\mathcal{M} \text{ is a } \underline{bisimulation \ quotient}}$

of some ternary $\mathcal{N}\models\mathcal{A}$

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

 $\mathcal{B} \text{ accepts } \mathcal{M}$ \iff $\exists \text{ve wins } \mathcal{G}(\mathcal{M}, \mathcal{A})$ \iff $\mathcal{M} \text{ is a } \underline{bisimulation \ quotient}}$

of some ternary $\mathcal{N}\models\mathcal{A}$

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

^{• ...}and use it to decide separation.

• for \mathcal{A} we construct exponentially-sized \mathcal{B} such that for all \mathcal{M} :

Thank you!

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

• Then: ψ separates φ from φ' over \mathcal{D} iff it separates $\varphi \wedge \theta$ from $\varphi' \wedge \theta$ over \mathcal{C} .

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

• Then: ψ separates φ from φ' over \mathcal{D} iff it separates $\varphi \wedge \theta$ from $\varphi' \wedge \theta$ over \mathcal{C} .

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

• Then: ψ separates φ from φ' over \mathcal{D} iff it separates $\varphi \wedge \theta$ from $\varphi' \wedge \theta$ over \mathcal{C} .

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Then: ψ separates φ from φ' over \mathcal{D} iff it separates $\varphi \wedge \theta$ from $\varphi' \wedge \theta$ over \mathcal{C} .
- Example: ψ separates φ from φ' over $\underline{\mathsf{finite}}$ words
- iff it separates $\varphi \wedge \varphi_{\rm WF}$ from $\varphi' \wedge \varphi_{\rm WF}$ over (arbitrary) words

- Assume classess of models ${\mathcal C}$ and ${\mathcal D}$ and formula θ such that
- θ defines \mathcal{D} in \mathcal{C} : $\mathcal{M} \in \mathcal{D}$ iff $\mathcal{M} \in \mathcal{C}$ and $\mathcal{M} \models \varphi$.

- Then: ψ separates φ from φ' over \mathcal{D} iff it separates $\varphi \wedge \theta$ from $\varphi' \wedge \theta$ over \mathcal{C} .
- Example: ψ separates φ from φ' over $\underline{\mathsf{finite}}$ words
- iff it separates $\varphi \wedge \varphi_{\rm WF}$ from $\varphi' \wedge \varphi_{\rm WF}$ over (arbitrary) words