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e Hence, L-definability: "is given ¢ expressible in L£?"

e is a special case of L-separability.
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e Given contradictory ¢ and ¢’ in u-ML...

e ... is there a separator 1 in ML? Can it be computed?’

Example Non-example
@ = ux.a A <(bV x) © = wr = ux.0x
“some path has labels from a™b" “no infinite paths”
= a ¢ entails no modal formulae!

“root satisfies a"

gp’ = vy.c/\ Oy g&’ = TWYWF

“all (finite) paths belong to c*” “there is an infinite path”
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ML-separability ExpTime PSpace ExpTime | 2-ExpTime

separator construction | double exp. | single exp. | double exp. | triple exp.
interpolant existence always always always | coNExpTime

for modal logic

e all the complexity results are completeness results.

e words mean unary trees: words with successor relation, no order.

e in all cases trees are unordered.
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e idea implemented using gadgets possible over ternary, but not binary trees
e with more effort: alternating ExpSpace machines

e conclusion: modal separation is 2-ExpTime-hard over ternary trees!
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o for M =(V,E)and A =(Q,0,q,rank):

Jve wins G(M, A)
<~

M is a bisimulation quotient

of some ternary N = A

e positions: V x @

e from (v,q) Jve chooses a transition {q1,92,93} =D € §(q, color(v))

e and a surjective map h: D — W where W is the set of children of v.
e Vdam responds with a choice of g; €D

e the next round starts in (h(q;),q;).

e Parity game: ranks inherited from A.
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e for A we construct exponentially-sized B such that for all M:
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