
Modal Separation of Fixpoint Formulae

Jean Christoph Jung & Jędrzej Kołodziejski

Technical University of Dortmund

6 III 2025
Jena

Powered by BeamerikZ

https://www.mimuw.edu.pl/~mskrzypczak/projects/beamerikz/

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

given mutually
inconsistent φ |= ¬φ′

a separator is a formula ψ
s.t. φ |= ψ and ψ |= ¬φ′

A
ll

m
od

el
s

φ

φ′

ψ

Separators

A
ll

m
od

el
s

φ

φ′

ψ

complicated
formulae φ |= ¬φ′

in expressive logic L+

simple ψ s.t.
φ|=ψ|= ¬φ′?

in tamed logic L⊆L+

simple explanation of
contradiction

Separators

A
ll

m
od

el
s

φ

φ′

ψ

complicated
formulae φ |= ¬φ′

in expressive logic L+

simple ψ s.t.
φ|=ψ|= ¬φ′?

in tamed logic L⊆L+

simple explanation of
contradiction

Separators

A
ll

m
od

el
s

φ

φ′

ψ

complicated
formulae φ |= ¬φ′

in expressive logic L+

simple ψ s.t.
φ|=ψ|= ¬φ′?

in tamed logic L⊆L+

simple explanation of
contradiction

Separators

A
ll

m
od

el
s

φ

φ′

ψ

complicated
formulae φ |= ¬φ′

in expressive logic L+

simple ψ s.t.
φ|=ψ|= ¬φ′?

in tamed logic L⊆L+

simple explanation of
contradiction

Separators

A
ll

m
od

el
s

φ

φ′

ψ

complicated
formulae φ |= ¬φ′

in expressive logic L+

simple ψ s.t.
φ|=ψ|= ¬φ′?

in tamed logic L⊆L+

simple explanation of
contradiction

Separators

A
ll

m
od

el
s

φ

φ′

ψ

complicated
formulae φ |= ¬φ′

in expressive logic L+

simple ψ s.t.
φ|=ψ|= ¬φ′?

in tamed logic L⊆L+

simple explanation of
contradiction

Example: labelled trees

some path
starting in root
has labels in:

a+b

every (finite) path
starting in root
has labels in

c∗

root labelled a

Example: labelled trees

some path
starting in root
has labels in:

a+b

every (finite) path
starting in root
has labels in

c∗

root labelled a

Example: labelled trees

some path
starting in root
has labels in:

a+b

every (finite) path
starting in root
has labels in

c∗

root labelled a

Example: labelled trees

some path
starting in root
has labels in:

a+b

every (finite) path
starting in root
has labels in

c∗

root labelled a

Example: labelled trees

some path
starting in root
has labels in:

a+b

every (finite) path
starting in root
has labels in

c∗

root labelled a

Decision problem: L-separability

given: φ,φ′ ∈ L+

is there a separator ψ ∈ L?

Decision problem: L-separability

given: φ,φ′ ∈ L+

is there a separator ψ ∈ L?

Decision problem: L-separability

given: φ,φ′ ∈ L+

is there a separator ψ ∈ L?

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

Separability generalizes definability

• For every formulae φ and ψ:

ψ separates φ from ¬φ

⇐⇒
φ and ψ are equivalent.

• Hence, L-definability: “is given φ expressible in L?”

• is a special case of L-separability.

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML

syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics

formulae interpreted in
points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At

φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The logics L and L+

L = modal logic ML
syntax:

a | ¬φ | φ ∨ ψ | 3φ

semantics
formulae interpreted in

points of labelled
directed graphs

atomic
propositions a ∈ At φ true in some child

L+ = µ-ML = ML + fixpoints

| x | µx .φ

The semantics of µ-ML = ML + fixpoints

µ-ML
=

Automata

The semantics of µ-ML = ML + fixpoints

µ-ML
=

Automata

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

Translations

µ-ML formulae parity automata

EXPONENTIAL

EXPONENTIAL

=

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The question: modal separability

• Given contradictory φ and φ′ in µ-ML...

• ... is there a separator ψ in ML? Can it be computed?

Example

φ = µx .a ∧3(b ∨ x)
“some path has labels from a+b”

φ′ = νy .c ∧2y
“all (finite) paths belong to c∗”

ψ = a
“root satisfies a”

Non-example

φ = φWF = µx .2x
“no infinite paths”

φ′ = ¬φWF
“there is an infinite path”

φ entails no modal formulae!

The answer:

all models words binary trees
d -ary trees
for d ≥ 3

ML-definability ExpTime PSpace ExpTime ExpTime

ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.

interpolant existence
for modal logic

always always always coNExpTime

• all the complexity results are completeness results.

• words mean unary trees: words with successor relation, no order.

• in all cases trees are unordered.

The answer:

all models words binary trees
d -ary trees
for d ≥ 3

ML-definability ExpTime PSpace ExpTime ExpTime

ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.

interpolant existence
for modal logic

always always always coNExpTime

• all the complexity results are completeness results.

• words mean unary trees: words with successor relation, no order.

• in all cases trees are unordered.

The answer:

all models words binary trees
d -ary trees
for d ≥ 3

ML-definability ExpTime PSpace ExpTime ExpTime

ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.

interpolant existence
for modal logic

always always always coNExpTime

• all the complexity results are completeness results.

• words mean unary trees: words with successor relation, no order.

• in all cases trees are unordered.

The answer:

all models words binary trees
d -ary trees
for d ≥ 3

ML-definability ExpTime PSpace ExpTime ExpTime

ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.

interpolant existence
for modal logic

always always always coNExpTime

• all the complexity results are completeness results.

• words mean unary trees: words with successor relation, no order.

• in all cases trees are unordered.

The answer:

all models words binary trees
d -ary trees
for d ≥ 3

ML-definability ExpTime PSpace ExpTime ExpTime

ML-separability ExpTime PSpace ExpTime 2-ExpTime

separator construction double exp. single exp. double exp. triple exp.

interpolant existence
for modal logic

always always always coNExpTime

• all the complexity results are completeness results.

• words mean unary trees: words with successor relation, no order.

• in all cases trees are unordered.

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones! !!!!!!

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones! !!!!!!

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones! !!!!!!

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones! !!!!!!

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones! !!!!!!

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones!

!!!!!!

What’s hot:

• ML-separability is 2-ExpTime-complete over ternary trees...

• ...but only ExpTime-complete over binary trees.

• Craig interpolants (type of separators) for ML always exist over binary trees...

• ...but over ternary trees deciding its existence is coNExpTime-complete.

Ternary (and higher arity) trees
are harder than the binary ones! !!!!!!

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′

bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Behind separability

no modal separator for φ and φ′

⇐⇒
for every n ∈ N there are: φ =| M ∼n M′ |= φ′

∼n

M

φ =|

M′

|= φ′
bisimilar up
to depth n()

?⇐⇒
for every n ∈ N there are: φ =| M ∼=n M′ |= φ′

bisimilar up
to depth n

isomorphic up
to depth n

✓ all models

✓ finite trees

✓ binary trees

✗ ternary trees

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

Turing machine T with
2n memory cells

· · · · · · · · ·

configurations of T

1
· · · · · · · · ·

i
· · · · · · · · ·

i -th copy: i -th cell updated correctly

2n
· · · · · · · · ·

φ′ enforces M′

M′

1

i

2n

· · · · · · · · ·

i -th copy: i -th cell updated correctly

φ′ enforces M′

φ enforces M

M · · ·

φ,φ′ not
separable

∼

⇐⇒ T has a run

Ternary case: lower bound

• for a given ExpSpace Turing machine T we construct φ,φ′ such that:

φ,φ′ not
separable ⇐⇒ T has a run

• idea implemented using gadgets possible over ternary, but not binary trees

• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: lower bound

• for a given ExpSpace Turing machine T we construct φ,φ′ such that:

φ,φ′ not
separable ⇐⇒ T has a run

• idea implemented using gadgets possible over ternary, but not binary trees

• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: lower bound

• for a given ExpSpace Turing machine T we construct φ,φ′ such that:

φ,φ′ not
separable ⇐⇒ T has a run

• idea implemented using gadgets possible over ternary, but not binary trees

• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: lower bound

• for a given ExpSpace Turing machine T we construct φ,φ′ such that:

φ,φ′ not
separable ⇐⇒ T has a run

• idea implemented using gadgets possible over ternary, but not binary trees

• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: lower bound

• for a given ExpSpace Turing machine T we construct φ,φ′ such that:

φ,φ′ not
separable ⇐⇒ T has a run

• idea implemented using gadgets possible over ternary, but not binary trees

• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: lower bound

• for a given ExpSpace Turing machine T we construct φ,φ′ such that:

φ,φ′ not
separable ⇐⇒ T has a run

• idea implemented using gadgets possible over ternary, but not binary trees

• with more effort: alternating ExpSpace machines

• conclusion: modal separation is 2-ExpTime-hard over ternary trees!

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A
∼

∼

functional
bisimulation

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A
∼

∼

functional
bisimulation

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A
∼

∼

functional
bisimulation

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A
∼

∼

functional
bisimulation

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A
∼

∼

functional
bisimulation

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A

∼

∼

functional
bisimulation

Ternary case: upper bound

• assume: tree M = (V ,E), every node with at most ternary branching

• and a nondeterministic parity automaton A = (Q, δ, qI , rank)

• we define a game G(M,A) played between ∃ve and ∀dam such that:

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

N M

|= A
∼

∼

functional
bisimulation

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for M = (V ,E) and A = (Q, δ, qI , rank):

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• positions: V × Q

• from (v ,q) ∃ve chooses a transition {q1,q2,q3} =D ∈ δ(q, color(v))

• and a surjective map h : D → W where W is the set of children of v .

• ∀dam responds with a choice of qi ∈D

• the next round starts in (h(qi),qi).

• Parity game: ranks inherited from A.

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼
∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼
∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼
∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼
∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼
∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼
∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼

∼ ∼

∼ ∼
?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼

∼ ∼

∼ ∼

?

Ternary case: upper bound

• for A we construct exponentially-sized B such that for all M:

B accepts M
⇐⇒

∃ve wins G(M,A)

⇐⇒
M is a bisimulation quotient

of some ternary N |= A

• ...and use it to decide separation.

φ φ′

∼

∼ ∼

∼ ∼
?

Thank you!

Relativization

• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ

φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

Relativization
• Assume classess of models C and D and formula θ such that

• θ defines D in C: M ∈ D iff M ∈ C and M |= φ.

C

D

Finitely
branching
models

θ = φWF

Finite
trees

• Then: ψ separates φ from φ′ over D iff it separates φ ∧ θ from φ′ ∧ θ over C.

φ ∧ θ φ′ ∧ θ

• Example: ψ separates φ from φ′ over finite words

• iff it separates φ ∧ φWF from φ′ ∧ φWF over (arbitrary) words

ψ

