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Monads and effects (Moggi 1989)

I Effects can be modelled using monads, e.g. (in Set):
I non-determinism: X → PY = {subsets of Y }
I probabilities: X → DY = {finite-support prob. distr. on Y }

I In Set, a type constructor X 7→ TX is a monad when it comes
with polymorphic functions

mapT: (X → Y )→ (TX → TY )
joinT: TTX → TX

returnT: X → TX

satisfying certain axioms, so that T-effectful morphisms

X T Y ≡ X → TY

form a category Eff(T)
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Composing effects via weak distributive laws (WDLs)

I What about combining effects? In general, given monads T
and S, there could be a monad structure on a retract of ST.

I True with a weak distributive law (Beck 1969)(Garner 2019),
i.e. a polymorphic

swapTS: TSX → STX

satisfying four three axioms.
Equivalently, a way to weakly extend mapT to Eff(S)

mapT: (X S Y ) (TX S TY )

that makes T into a semi-monad T on Eff(S).
I WDLs give rise to generic constructions: generalized

determinization, up-to techniques
I There is no distributive law DP⇒ PD (Varacca and Winskel

2006) nor PP⇒ PP (Klin and Salamanca 2018)!
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Examples of weak distributive laws
I (Garner 2019) In Set, a WDL PP⇒ PP s.t. (P • P)X =
{sets of subsets of X closed under non-empty unions}

I (Goy and Petrişan 2020) In Set, there is a WDL DP⇒ PD
s.t. (P • D)X = {convex subsets of prob. distr. on X}

I (Garner 2019) General construction of a WDL TP⇒ PT on
Set:
I Eff(P) ∼= Rel� Span(Set)

Eff(P) f : X → PY

Rel R ⊆ X × Y

Span(Set) X ←−−−−−
x←[(x,y)

R −−−−−→
(x,y) 7→y

Y

I Extend mapT to Eff(P) by setting

mapT
(

X g←− Z h−→ Y
)

= TX mapT(g)←−−−−− TZ mapT(h)−−−−−→ TY

I It’s the only way to have mapT preserve the order between
relations! We say the WDL is monotone.
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Algebras for a monad

I If T is a monad, a T-algebra is a pair (A, a: TA→ A)
satisfying some axioms.

I T-algebras form a category, written Alg(T).
I Examples:

I Alg(P) ∼= JSL: P-algebras = complete join-semilattices
I Alg(D) ∼= Conv: D-algebras = barycentric algebras / convex

spaces
I Alg(β) ∼= KHaus (Manes 1969): β-algebrasi = compact

Hausdorff spaces

iβ is the ultrafilter monad
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Weak liftings

A WDL TS⇒ ST is equivalently given by
I swapTS: TSX → STX
I a weak extension of mapT to Eff(S)
I a weak lifting of S to Alg(T), i.e. a monad S on Alg(T) s.t.,

up to a retraction, S(A, a) = (SA, . . .).

Examples:
I the law PP⇒ PP yields, on Alg(P) ∼= JSL, the monad P of

subsets closed under non-empty joins
I the law DP⇒ PD yields, on Alg(D) ∼= Conv, the monad P

of convex subsets
I (Garner 2019) there is a monotone WDL βP⇒ Pβ: it yields,

on Alg(β) ∼= KHaus, the Vietoris monad V of closed subsets
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Monotone WDLs over P in Alg(T)

9 / 12



Characterization of monotone WDLs in Alg(T)
There are powerset-like monads in Alg(P) ∼= JSL,
Alg(D) ∼= Conv, Alg(β) ∼= KHaus (and more). Do they weakly
distribute over themselves, just like P does in Set?

I Given a monotone WDL TP⇒ PT in Set, can the setting for
monotone WDLs over P be lifted to Alg(T)?
I Alg(T) is a regular category: it has a category of relations

Rel(Alg(T))� Span(Alg(T)).
I Eff

(
P

)
↪→ Rel(Alg(T)). P-effectful morphism correspond to

spans X f←− · g−→ Y where f is decomposable.
I If mapS extends to Rel, making S into a monad/semi-monad,

the same is true of mapS and Rel(Alg(T)).
I S has a monotone WDL over P iff mapS preserves

decomposable morphisms.
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Case study: compact Hausdorff spaces

From the monotone WDL βP⇒ Pβ, we automatically retrieve:
I Alg(β) ∼= KHaus has a category of relations Rel(KHaus)

(closed relations)
I Eff(V) ↪→ Rel(KHaus)
I decomposable continuous functions are the open ones
I mapV preserves open functions (easy): there is a monotone

WDL VV⇒ VV
Using similar techniques for the Radon monad R:
I mapR does not preserve open functions: there is no monotone

WDL RV⇒ VR (new!)
I mapR preserves open surjections: there is a monotone WDL

RV∗ ⇒ V∗R (new!)
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Conclusion: no-go theorems for monotone WDLs

PP⇒ PP and VV⇒ VV look the same... but monotone WDLs
over P are quite rare otherwise:

KHaus JSL Conv Mon CMon

V R P P M D P MS M D P

P 3 7 7 7 7 7 7 7 7 7 7

P∗ 3 3 7 7 7 7 7 7 7 7 7

I What’s next?
I extending this framework: Pos-regular categories, other

monads of relations
I no-go theorems for (all) WDLs
I seeing this in the setting of monoidal topology
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