
MULTIDIMENSIONAL QUANTUM WALKS,
RECURSION, AND QUANTUM DIVIDE &

CONQUER

QUSOFT
UNIVERSITY OF

AMSTERDAM

Stacey Jeffery Galina Pass

QUSOFT
CWI
UNIVERSITY OF
AMSTERDAM

POWER OF QUANTUM COMPUTERS

How powerful are quantum computers?

What problems allow quantum speedups?

Polynomial? Exponential?

1

TOOLS FOR CLASSICAL AND QUANTUM
ALGORITHMS

CLASSICAL QUANTUM

Greedy algorithms

Dynamic programming

Linear programming

Heuristic algorithms

Divide and conquer

Quantum amplitude amplification

Quantum Fourier transform

Quantum phase estimation

Quantum walks

Quantum divide and conquer

2

TOOLS FOR CLASSICAL AND QUANTUM
ALGORITHMS

CLASSICAL QUANTUM

Greedy algorithms

Dynamic programming

Linear programming

Heuristic algorithms

Divide and conquer

Quantum amplitude amplification

Quantum Fourier transform

Quantum phase estimation

Quantum walks

Quantum divide and conquer

THIS WORK
2

TOOLS FOR CLASSICAL AND QUANTUM
ALGORITHMS

CLASSICAL QUANTUM

Greedy algorithms

Dynamic programming

Linear programming

Heuristic algorithms

Divide and conquer

Quantum amplitude amplification

Quantum Fourier transform

Quantum phase estimation

Quantum walks

Quantum divide and conquer

quantum speedup for a class of problems
2

OUTLINE

CLASSICAL MOTIVATION

ATTEMPT TO USE QUANTUM PRIMITIVES

MAIN RESULT

APPLICATION TO DSTCON

OUTLINE
ATTEMPT TO USE QUANTUM PRIMITIVES

MAIN RESULT

APPLICATION TO DSTCON

Classical motivation

DIVIDE AND CONQUER APPROACH

¬ ∧

¬ ∧ ¬ ∧
…

… …
d

d d

¬ ∧

x1

…

d xd

¬ ∧
…

d xdk

…

… x*

k + 1

NAND tree
3

DIVIDE AND CONQUER APPROACH

¬ ∧

¬ ∧ ¬ ∧
…

… …
d

d d

¬ ∧

x1

…

d xd

¬ ∧
…

d xdk

…

… x*

k + 1

RECURSIVE RELATION

Tcl(fk,d) = dTcl(fk−1,d) + Taux

combiningsubproblem
complexity

subproblems

NAND tree
3

OUTLINE

CLASSICAL MOTIVATION

MAIN RESULT

APPLICATION TO DSTCON

Attempt to use quantum primitives

QUANTUM DIVIDE AND CONQUER
ATTEMPT

¬ ∧

¬ ∧ ¬ ∧
…

… …
d

d d

¬ ∧

x1

…

d xd

¬ ∧
…

d xdk

…

… x*

k + 1

O(d)Grover’s algorithm computes in
 queries

¬ ∧
O(d)

NAND tree
4

QUANTUM DIVIDE AND CONQUER
ATTEMPT

¬ ∧

¬ ∧ ¬ ∧
…

… …
d

d d

¬ ∧

x1

…

d xd

¬ ∧
…

d xdk

…

… x*

k + 1

O(d)Grover’s algorithm computes in
 queries

¬ ∧
O(d)

Tq(fk,d) = c dTq(fk−1,d)

if Grover’s alg is perfect

NAND tree
4

QUANTUM DIVIDE AND CONQUER
ATTEMPT

¬ ∧

¬ ∧ ¬ ∧
…

… …
d

d d

¬ ∧

x1

…

d xd

¬ ∧
…

d xdk

…

… x*

k + 1

O(d)Grover’s algorithm computes in
 queries

¬ ∧
O(d)

Tq(fk,d) = c dTq(fk−1,d)

= ck(d)k

if Grover’s alg is perfect

kills the speedup

NAND tree
4

QUANTUM DIVIDE AND CONQUER
ATTEMPT

¬ ∧

¬ ∧ ¬ ∧
…

… …
d

d d

¬ ∧

x1

…

d xd

¬ ∧
…

d xdk

…

… x*

k + 1

O(d)Grover’s algorithm computes in
 queries

¬ ∧
O(d)

Tq(fk,d) = c dTq(fk−1,d)

= ck(d)k

if Grover’s alg is perfect

kills the speedup

But we know [Rei11]O(dk)

NAND tree
4

OUTLINE

CLASSICAL MOTIVATION

ATTEMPT TO USE QUANTUM PRIMITIVES

APPLICATION TO DSTCON

Main result

QUANTUM DIVIDE AND CONQUER

THEOREM. Let fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n
a

Then the quantum time complexity of is , wherefl,n Õ(T(l, n))

T(l, n) ≤ aT(l/b, n) + Tq
aux

and space complexity .O(Sq
aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux

5

QUANTUM DIVIDE AND CONQUER

THEOREM. Let fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n

fl,n : Dl,n → {0,1}

a

Then the quantum time complexity of is , wherefl,n Õ(T(l, n))

T(l, n) ≤ aT(l/b, n) + Tq
aux

and space complexity .O(Sq
aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux

5

QUANTUM DIVIDE AND CONQUER

THEOREM. Let fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n

fl,n : Dl,n → {0,1} symmetric Boolean formula

a

Then the quantum time complexity of is , wherefl,n Õ(T(l, n))

T(l, n) ≤ aT(l/b, n) + Tq
aux

and space complexity .O(Sq
aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux

5

…

QUANTUM DIVIDE AND CONQUER

THEOREM. Let fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n

fl,n : Dl,n → {0,1} symmetric Boolean formula

a

Then the quantum time complexity of is , wherefl,n Õ(T(l, n))

T(l, n) ≤ aT(l/b, n) + Tq
aux

and space complexity .O(Sq
aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux

Tq
aux, Sq

aux

5

…

QUERY VS TIME COMPLEXITY

Ox| i⟩ |0⟩ → → | i⟩ |xi⟩

6

Assume oracle access to the input x ∈ {0,1}m

QUERY VS TIME COMPLEXITY

Ox| i⟩ |0⟩ → → | i⟩ |xi⟩

6

Assume oracle access to the input x ∈ {0,1}m
can encode e.g. a function or an adjacency matrix

QUERY VS TIME COMPLEXITY

Ox| i⟩ |0⟩ → → | i⟩ |xi⟩

Assume oracle access to the input x ∈ {0,1}m
can encode e.g. a function or an adjacency matrix

Often the most expensive operation of the algorithm

6

QUERY VS TIME COMPLEXITY

Ox| i⟩ |0⟩ → → | i⟩ |xi⟩

Often the most expensive operation of the algorithm

QUERY COMPLEXITY: only count oracle calls

6

Assume oracle access to the input x ∈ {0,1}m
can encode e.g. a function or an adjacency matrix

QUERY VS TIME COMPLEXITY

Ox| i⟩ |0⟩ → → | i⟩ |xi⟩

Often the most expensive operation of the algorithm

QUERY COMPLEXITY: only count oracle calls

TIME COMPLEXITY: count all the operations STRONGER

6

Assume oracle access to the input x ∈ {0,1}m
can encode e.g. a function or an adjacency matrix

QUANTUM DIVIDE AND CONQUER

THEOREM. Let fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n

fl,n : Dl,n → {0,1} symmetric Boolean formula

a

Then the quantum time complexity of is , wherefl,n Õ(T(l, n))

T(l, n) ≤ aT(l/b, n) + Tq
aux

and space complexity .O(Sq
aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux

Tq
aux, Sq

aux …

CONTEXT
QUERY COMPLEXITY

TIME COMPLEXITY

[CKKD+22]

[ABB+23]

7

Arbitrary Boolean formulas & more general functions

Only query complexity

Not constructive

AND or OR

MIN or MAX

OUTLINE

CLASSICAL MOTIVATION

ATTEMPT TO USE QUANTUM PRIMITIVES

MAIN RESULT

Application to DSTCON

DIRECTED ST-CONNECTIVITY

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t
8

DIRECTED ST-CONNECTIVITY

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t
8

DIRECTED ST-CONNECTIVITY

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

[Sav70]

8

DIRECTED ST-CONNECTIVITY

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t

v

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

[Sav70]

8

DIRECTED ST-CONNECTIVITY

For :v ∈ V

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t

v

For :v ∈ V
SAVITCH'S ALGORITHM

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

SAVITCH'S ALGORITHM

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

For :v ∈ V
[Sav70]

8

DIRECTED ST-CONNECTIVITY

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t

v

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

[Sav70]

8

DIRECTED ST-CONNECTIVITY

Directed graph G = (V, E)

Special vertices s, t ∈ V

Is there a path from to ?s t

s

t

v

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

[Sav70]

8

DIRECTED ST-CONNECTIVITY s

t

v

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

[Sav70]

9

DIRECTED ST-CONNECTIVITY s

t

v

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

SPACE

TIME O((2n)log n)
O(log2 n)

|V | = n

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

[Sav70]

9

DIRECTED ST-CONNECTIVITY s

t

v

SAVITCH'S ALGORITHM
For :v ∈ V

Check if there is a path of length s → v n/2
Check if there is a path of length v → t n/2

SPACE

TIME O((2n)log n)
O(log2 n)

|V | = n

Path(s, t, n) = ∨v∈V (Path(s, v, n/2) ∧ Path(v, t, n/2))

Can write down as a formula

[Sav70]

9

DIRECTED ST-CONNECTIVITY
Path(s, t, n) = ∨v∈V (Path(s, v, n/2) ∧ Path(v, t, n/2))

|V | = n

10

DIRECTED ST-CONNECTIVITY
Path(s, t, n) = ∨v∈V (Path(s, v, n/2) ∧ Path(v, t, n/2))

T(n, n) = 2nT(n/2,n) + O(1)

path length graph size

|V | = n

T(l, n) ≤ aT(l/b, n) + Tq
aux

O(SQ
aux(l, n) + log T(l, n))

fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n

a

10

DIRECTED ST-CONNECTIVITY

|V | = n

Path(s, t, n) = ∨v∈V (Path(s, v, n/2) ∧ Path(v, t, n/2))

T(n, n) = 2nT(n/2,n) + O(1)

SPACE

TIME O((2n)log n)
O(log2 n)

CLASSICAL

O(2n
log n)

O(log2 n)

QUANTUM

T(l, n) ≤ aT(l/b, n) + Tq
aux

O(SQ
aux(l, n) + log T(l, n))

fl,n = ϕ(f l
b ,n, …, f l

b ,n) ∨ faux,l,n

a
path length graph size

10

SUMMARY

Classical divide and conquer + quantum primitives doesn’t work

11

SUMMARY

Classical divide and conquer + quantum primitives doesn’t work

We develop a time-efficient quantum divide and conquer framework

11

SUMMARY

Classical divide and conquer + quantum primitives doesn’t work

We develop a time-efficient quantum divide and conquer framework

Quadratic speedup for DSTCON in the low-space regime

11

THANK YOU

for your attention

