MULTIDIMENSIONAL QUANTUM WALKS, RECURSION, AND QUANTUM DIVIDE & CONQUER

Stacey Jeffery

QUSOFT CWI UNIVERSITY OF AMSTERDAM Galina Pass

POWER OF QUANTUM COMPUTERS

How powerful are quantum computers?

What problems allow quantum speedups?

Polynomial? Exponential?

TOOLS FOR CLASSICAL AND QUANTUM ALGORITHMS

CLASSICAL

- Greedy algorithms
- Dynamic programming
- Linear programming
- Heuristic algorithms
- Divide and conquer

QUANTUM

- Quantum amplitude amplification
- Quantum Fourier transform
- Quantum phase estimation
- Quantum walks
- Quantum divide and conquer

TOOLS FOR CLASSICAL AND QUANTUM ALGORITHMS

CLASSICAL

- Greedy algorithms
- Dynamic programming
- Linear programming
- Heuristic algorithms
- Divide and conquer

QUANTUM

- Quantum amplitude amplification
- Quantum Fourier transform
- Quantum phase estimation
- Quantum walks
 - Quantum divide and conquer

THIS WORK

TOOLS FOR CLASSICAL AND QUANTUM ALGORITHMS

CLASSICAL

- Greedy algorithms
- Dynamic programming
- Linear programming
- Heuristic algorithms
- Divide and conquer

QUANTUM

- Quantum amplitude amplification
- Quantum Fourier transform
- Quantum phase estimation
- Quantum walks

Quantum divide and conquer

quantum speedup for a class of problems

CLASSICAL MOTIVATION

ATTEMPT TO USE QUANTUM PRIMITIVES

MAIN RESULT

APPLICATION TO DSTCON

OUTLINE

Classical motivation

ATTEMPT TO USE QUANTUM PRIMITIVES

MAIN RESULT

APPLICATION TO DSTCON

OUTLINE

DIVIDE AND CONQUER APPROACH

DIVIDE AND CONQUER APPROACH

RECURSIVE RELATION

subproblems

$T_{cl}(f_{k,d}) = dT_{cl}(f_{k-1,d}) + T_{aux}$

subproblem complexity

combining

CLASSICAL MOTIVATION

Attempt to use quantum primitives

MAIN RESULT

APPLICATION TO DSTCON

OUTLINE

• Grover's algorithm computes $\neg \land$ in $O(\sqrt{d})$ queries

Grover's algorithm computes $\neg \land$ in $O(\sqrt{d})$ queries

if Grover's alg is perfect

• $T_q(f_{k,d}) = c\sqrt{d}T_q(f_{k-1,d})$

• Grover's algorithm computes $\neg \land$ in $O(\sqrt{d})$ queries

if Grover's alg is perfect

• $T_q(f_{k,d}) = c\sqrt{d}T_q(f_{k-1,d})$

 $(d)^k$ $= C^{k}(\mathbf{1})$

kills the speedup

• Grover's algorithm computes $\neg \land$ in $O(\sqrt{d})$ queries

if Grover's alg is perfect

• $T_q(f_{k,d}) = c\sqrt{d}T_q(f_{k-1,d})$

 $= c^k (\sqrt{d})^k$

kills the speedup

• But we know $O(\sqrt{d^k})$ [Rei11]

CLASSICAL MOTIVATION

ATTEMPT TO USE QUANTUM PRIMITIVES

APPLICATION TO DSTCON

OUTLINE

THEOREM. Let $f_{l,n} = \phi(f_{\frac{1}{b},n}, f_{\frac{1}{b},n})$ Then the quantum time complexity of $f_{l,n}$ is $\tilde{O}(T(l,n))$, where

and space complexity $O(S^q_{aux}(l,n) + \log T(l,n))$.

vs classical $T(l,n) \leq aT(l/b,n) + T_{aux}^{cl}$

$$\dots, f_{\frac{l}{b}, n}) \vee f_{aux, l, n}$$

$$T(l,n) \le \sqrt{a}T(l/b,n) + T_{aux}^q$$

 $f_{l,n}: D_{l,n} \to \{0,1\}$

THEOREM. Let $f_{l,n} = \phi(f_{\frac{l}{b},n}, n)$

T(l, n

and space complexity $O(S^q_{aux}(l,n) + \log T(l,n))$.

vs classical $T(l,n) \leq aT(l/b,n) + T_{aux}^{cl}$

$$\dots, f_{\frac{l}{b}, n}) \vee f_{aux, l, n}$$

Then the quantum time complexity of $f_{l,n}$ is $\tilde{O}(T(l,n))$, where

$$T(l/b, n) + T^q_{aux}$$

$$\dots, f_{\frac{l}{b}, n}) \vee f_{aux, l, n}$$

$$T(l/b, n) + T^q_{aux}$$

vs classical $T(l,n) \leq aT(l/b,n) + T_{aux}^{cl}$

$$T(l/b, n) + T^q_{aux}$$

vs classical $T(l,n) \leq aT(l/b,n) + T_{aux}^{cl}$

• Assume oracle access to the input $x \in \{0,1\}^m$

$|i\rangle|0\rangle \rightarrow O_x \rightarrow |i\rangle|x_i\rangle$

• Assume oracle access to the input $x \in \{0,1\}^m$

can encode e.g. a function or an adjacency matrix

 $|i\rangle|0\rangle \rightarrow O_x \rightarrow |i\rangle|x_i\rangle$

Assume oracle access to the input $x \in \{0,1\}^m$ $|i\rangle|0\rangle \rightarrow O_x \rightarrow |i\rangle|x_i\rangle$

Often the most expensive operation of the algorithm

can encode e.g. a function or an adjacency matrix

Assume oracle access to the input $x \in \{0,1\}^m$

Often the most expensive operation of the algorithm

QUERY COMPLEXITY: only count oracle calls

can encode e.g. a function or an adjacency matrix

 $|i\rangle|0\rangle \rightarrow O_x \rightarrow |i\rangle|x_i\rangle$

• Assume oracle access to the input $x \in \{0,1\}^m$

 $|i\rangle|0\rangle \rightarrow O_x \rightarrow |i\rangle|x_i\rangle$

Often the most expensive operation of the algorithm

QUERY COMPLEXITY: only count oracle calls

• TIME COMPLEXITY: count all the operations

can encode e.g. a function or an adjacency matrix

and space complexity $O(S^q_{aux}(l,n) + \log T(l,n))$.

$$T(l/b, n) + T^q_{aux}$$

vs classical $T(l,n) \leq aT(l/b,n) + T_{aux}^{cl}$

[CKKD+22]

QUERY COMPLEXITY

Not constructive

TIME COMPLEXITY

AND or OR • MIN or MAX

ABB+23

- Arbitrary Boolean formulas & more general functions

CLASSICAL MOTIVATION

ATTEMPT TO USE QUANTUM PRIMITIVES

MAIN RESULT

OUTLINE

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

- Directed graph G = (V, E)
- Special vertices $s, t \in V$
- Is there a path from s to t?

SAVITCH'S ALGORITHM [Sav70] For $v \in V$: Check if there is a path $s \rightarrow v$ of length n/2Check if there is a path $v \rightarrow t$ of length n/2

 $O((2n)^{\log n})$ $O(\log^2 n)$ TIME SPACE

|V| = n

SAVITCH'S ALGORITHM [Sav70] For $v \in V$: Check if there is a path $s \rightarrow v$ of length n/2Check if there is a path $v \rightarrow t$ of length n/2

TIME
$$O((2n)^{\log n})$$
SPACE $O(\log^2 n)$

Can write down as a formula

 $Path(s, t, n) = \bigvee_{v \in V} (Path(s, v, n/2) \land Path(v, t, n/2))$

|V| = n

 $Path(s, t, n) = \bigvee_{v \in V} (Path(s, v, n/2) \land Path(v, t, n/2))$

|V| = n

 $Path(s, t, n) = \bigvee_{v \in V} (Path(s, v, n/2) \land Path(v, t, n/2))$

 $T(n,n) = \sqrt{2n}T(n/2,n) + O(1)$ path length graph size

|V| = n

 $f_{l,n} = \phi(\widehat{f_{\frac{l}{b},n}, \dots, f_{\frac{l}{b},n}}) \vee f_{aux,l,n}$ $T(l,n) \le \sqrt{a}T(l/b,n) + T_{aux}^q$ $O(S^Q_{aux}(l,n) + \log T(l,n))$

 $Path(s, t, n) = \bigvee_{v \in V} (Path(s, v, n/2) \land Path(v, t, n/2))$

 $T(n,n) = \sqrt{2n}T(n/2,n) + O(1)$ path length –

CLASSICAL $O((2n)^{\log n})$ TIME $O(\log^2 n)$ SPACE

QUANTUM
$$O\left(\sqrt{2n}^{\log n}\right)$$

 $O(\log^2 n)$

$$|V| = n$$

 $f_{l,n} = \phi(\widehat{f_{\frac{l}{b},n}, \dots, f_{\frac{l}{b},n}}) \vee f_{aux,l,n}$ $T(l,n) \le \sqrt{a}T(l/b,n) + T^q_{aux}$ $O(S^Q_{aux}(l,n) + \log T(l,n))$

SUMMARY

• Classical divide and conquer + quantum primitives doesn't work

SUMMARY

• Classical divide and conquer + quantum primitives doesn't work

• We develop a time-efficient quantum divide and conquer framework

SUMMARY

Classical divide and conquer + quantum primitives doesn't work

Quadratic speedup for DSTCON in the low-space regime

We develop a <mark>time-efficient quantum divide and conquer</mark> framework

