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POWER OF QUANTUM COMPUTERS

How powerful are quantum computers?

What problems allow quantum speedups?

Polynomial? Exponential?
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Linear programming
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Divide and conquer

Quantum amplitude amplification

Quantum Fourier transform

Quantum phase estimation 

Quantum walks
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quantum speedup for a class of problems
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QUANTUM DIVIDE AND CONQUER

THEOREM. Let fl,n = ϕ( f l
b ,n, …, f l

b ,n) ∨ faux,l,n
a

Then the quantum time complexity of  is , wherefl,n Õ(T(l, n))

T(l, n) ≤ aT(l/b, n) + Tq
aux
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aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux
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Ox| i⟩ |0⟩ → → | i⟩ |xi⟩

Often the most expensive operation of the algorithm

QUERY COMPLEXITY: only count oracle calls

TIME COMPLEXITY: count all the operations STRONGER
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T(l, n) ≤ aT(l/b, n) + Tq
aux

and space complexity .O(Sq
aux(l, n) + log T(l, n))

vs classical T(l, n) ≤ aT(l/b, n) + Tcl
aux

Tq
aux, Sq

aux …



CONTEXT
QUERY COMPLEXITY

TIME COMPLEXITY

[CKKD+22]

[ABB+23]
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Arbitrary Boolean formulas & more general functions

Only query complexity

Not constructive

AND or OR

MIN or MAX
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DIRECTED ST-CONNECTIVITY s
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For :v ∈ V

Check if there is a path  of length s → v n/2
Check if there is a path  of length v → t n/2

SPACE

TIME O((2n)log n)
O(log2 n)

|V | = n

Path(s, t, n) = ∨v∈V (Path(s, v, n/2) ∧ Path(v, t, n/2))

Can write down as a formula

[Sav70]
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SUMMARY
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We develop a time-efficient quantum divide and conquer framework

Quadratic speedup for DSTCON in the low-space regime
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