
Multivariate Exploration of Metric Dilation

Aritra Banik
1
, Fedor V. Fomin

2
, Petr A. Golovach

2
,

Tanmay Inamdar
3
, Satyabrata Jana

4
, Saket Saurabh

2,5

1
NISER Bhubaneswar, India

2
UiB, Bergen, Norway

3
IIT Jodhpur, India

4
University of Warwick, UK

5
IMSc, Chennai, India

Jena, Germany

05 Mar 2025

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM)

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)

Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM)

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)

Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM)

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)

Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM)

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)

Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM)

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)

Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM)

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)

Example

GΓ

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

Example

GΓ

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

Example

GΓ

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

Example

GΓ

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

Example

GΓ

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

1

1 1

1

2

2

4

Example

GΓ

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

1

1 1

1

2

2

4

dΓ(v1, v3) = 1 dG(v1, v3) = 3 dΓ(v5, v7) = 1 dG(v5, v7) = 4

Example

GΓ G + S

dΓ(v1, v3) = 1 dG(v1, v3) = 3

dG+S(v1, v3) = 1

dΓ(v5, v7) = 1 dG(v5, v7) = 4

dG+S(v5, v7) = 2

v2

v1

v3

v4

v6

v7

v5

v2

v1

v3

v5 v6

v7

v4

1

1 1

1

2

2

4

v2

v1

v3

v4

v7

v5 v6

4

2
1

1

1

1

2

1

1

Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task: Add k edges to G such that dialation becomes at most t.

☞ For which M, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Problem Definition

Dilation t-Augmentation

Input:

A graphG embedded in a metric spaceM on V (G), k ∈ N.

Task:

Add k edges to G such that dialation becomes at most t.

☞ For whichM, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task:

Add k edges to G such that dialation becomes at most t.

☞ For whichM, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task: Add k edges to G such that dialation becomes at most t.

☞ For whichM, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task: Add k edges to G such that dialation becomes at most t.

☞ For which M, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task: Add k edges to G such that dialation becomes at most t.

☞ For which M, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task: Add k edges to G such that dialation becomes at most t.

☞ For which M, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task: Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

What is known?

Diameter 2-Augmentation

Input:

A graph G, an integer k.

Task:

Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task:

Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task: Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task: Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task: Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task: Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input: A connected weighted graph G, a real number t.
Question: Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input:

A connected weighted graph G, a real number t.

Question:

Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input:

A connected weighted graph G, a real number t.

Question:

Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input: A connected weighted graph G, a real number t.
Question:

Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input: A connected weighted graph G, a real number t.
Question: Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input: A connected weighted graph G, a real number t.
Question: Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input: A connected weighted graph G, a real number t.
Question: Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]

Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t ifmaxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input: A set of n points in the plane, a positive integer k.
Task: Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]

Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t if maxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input:

A set of n points in the plane, a positive integer k.

Task:

Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]

Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t if maxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input:

A set of n points in the plane, a positive integer k.

Task:

Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]

Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t if maxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input: A set of n points in the plane, a positive integer k.
Task:

Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]

Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t if maxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input: A set of n points in the plane, a positive integer k.
Task: Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]

Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t if maxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input: A set of n points in the plane, a positive integer k.
Task: Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

Our Results

G Metric (Γ) Parameter(s) t Complexity

Kd,d-free General k + d 2 FPT

Star forest General k 3 W[1]-hard

General Star k 3 W[1]-hard

General Tree k 2 P

General Max deg-δ k + t+ δ t FPT

Max deg-δ General k + t+ δ t FPT

Subcubic (1, w) -weighted k 2 + ε W[1]-hard

Edgeless General k 2 NP-hard

General Clique k 2 W[2]-hard

Our Results

G Metric (Γ) Parameter(s) t Complexity

Kd,d-free General k + d 2 FPT

Star forest General k 3 W[1]-hard

General Star k 3 W[1]-hard

General Tree k 2 P

General Max deg-δ k + t+ δ t FPT

Max deg-δ General k + t+ δ t FPT

Subcubic (1, w) -weighted k 2 + ε W[1]-hard

Edgeless General k 2 NP-hard

General Clique k 2 W[2]-hard

This Talk

G Metric (Γ) Parameter(s) t Complexity

Kd,d-free General k + d 2 FPT

Star forest General k 3 W[1]-hard

General Star k 3 W[1]-hard

General Tree k 2 P

General Max deg-δ k + t+ δ t FPT

Max deg-δ General k + t+ δ t FPT

Subcubic (1, w) -weighted k 2 + ε W[1]-hard

Edgeless General k 2 NP-hard

General Clique k 2 W[2]-hard

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

What is Kd,d-free graphs?

It does not contain a complete bipartite graph as a subgraph.

K4,4

It includes trees, planar graphs, H minor-free graphs, graphs of bounded

expansion, nowhere dense graphs, and graphs of bounded degeneracy

What is Kd,d-free graphs?

It does not contain a complete bipartite graph as a subgraph.

K4,4

It includes trees, planar graphs, H minor-free graphs, graphs of bounded

expansion, nowhere dense graphs, and graphs of bounded degeneracy

What is Kd,d-free graphs?

It does not contain a complete bipartite graph as a subgraph.

K4,4

It includes trees, planar graphs, H minor-free graphs, graphs of bounded

expansion, nowhere dense graphs, and graphs of bounded degeneracy

What is Kd,d-free graphs?

It does not contain a complete bipartite graph as a subgraph.

K4,4

It includes trees, planar graphs, H minor-free graphs, graphs of bounded

expansion, nowhere dense graphs, and graphs of bounded degeneracy

Conflict versus Adjacent Conflicts

u and v are said to be in conflict if dG(u, v) > t · dM (u, v).

Definition u and v are said to be in adjacent conflict if

1 u and v are in conflict.

2 u and v are adjacent in Γ.

Lemma

- Consider a set of edges S

- G+ S is conflict-free ⇔ G+ S is adjacent conflict-free.

⇓

☞ We only need to focus on adjacent conflicts

Conflict versus Adjacent Conflicts

u and v are said to be in conflict if dG(u, v) > t · dM (u, v).

Definition u and v are said to be in adjacent conflict if

1 u and v are in conflict.

2 u and v are adjacent in Γ.

Lemma

- Consider a set of edges S

- G+ S is conflict-free ⇔ G+ S is adjacent conflict-free.

⇓

☞ We only need to focus on adjacent conflicts

Conflict versus Adjacent Conflicts

u and v are said to be in conflict if dG(u, v) > t · dM (u, v).

Definition u and v are said to be in adjacent conflict if

1 u and v are in conflict.

2 u and v are adjacent in Γ.

Lemma

- Consider a set of edges S

- G+ S is conflict-free ⇔ G+ S is adjacent conflict-free.

⇓

☞ We only need to focus on adjacent conflicts

Conflict versus Adjacent Conflicts

u and v are said to be in conflict if dG(u, v) > t · dM (u, v).

Definition u and v are said to be in adjacent conflict if

1 u and v are in conflict.

2 u and v are adjacent in Γ.

Lemma

- Consider a set of edges S

- G+ S is conflict-free ⇔ G+ S is adjacent conflict-free.

⇓

☞ We only need to focus on adjacent conflicts

Conflict versus Adjacent Conflicts

u and v are said to be in conflict if dG(u, v) > t · dM (u, v).

Definition u and v are said to be in adjacent conflict if

1 u and v are in conflict.

2 u and v are adjacent in Γ.

Lemma

- Consider a set of edges S

- G+ S is conflict-free ⇔ G+ S is adjacent conflict-free.

⇓

☞ We only need to focus on adjacent conflicts

Our First Target

Bound the number of conflict pairs.

Our First Target

Bound the number of conflict pairs.

Conflict Graph and Vertex Cover

Definition (Conflict Graph C)
- It captures all adjacent conflicts.

- V (C) = V (G)

- E(C) : uv ∈ E(C)⇔ u and v are in adjacent conflict.

Lemma

- Consider a solution S

- Every edge in E(C) has an endpoint in VS

☞ the size of a maximum matching in C is bounded

⇓

☞ the size of a minimum vertex cover in C is bounded

Conflict Graph and Vertex Cover

Definition (Conflict Graph C)
- It captures all adjacent conflicts.

- V (C) = V (G)

- E(C) : uv ∈ E(C) ⇔ u and v are in adjacent conflict.

Lemma

- Consider a solution S

- Every edge in E(C) has an endpoint in VS

☞ the size of a maximum matching in C is bounded

⇓

☞ the size of a minimum vertex cover in C is bounded

Conflict Graph and Vertex Cover

Definition (Conflict Graph C)
- It captures all adjacent conflicts.

- V (C) = V (G)

- E(C) : uv ∈ E(C) ⇔ u and v are in adjacent conflict.

Lemma

- Consider a solution S

- Every edge in E(C) has an endpoint in VS

☞ the size of a maximum matching in C is bounded

⇓

☞ the size of a minimum vertex cover in C is bounded

Conflict Graph and Vertex Cover

Definition (Conflict Graph C)
- It captures all adjacent conflicts.

- V (C) = V (G)

- E(C) : uv ∈ E(C) ⇔ u and v are in adjacent conflict.

Lemma

- Consider a solution S

- Every edge in E(C) has an endpoint in VS

☞ the size of a maximum matching in C is bounded

⇓

☞ the size of a minimum vertex cover in C is bounded

Conflict Graph and Vertex Cover

Definition (Conflict Graph C)
- It captures all adjacent conflicts.

- V (C) = V (G)

- E(C) : uv ∈ E(C) ⇔ u and v are in adjacent conflict.

Lemma

- Consider a solution S

- Every edge in E(C) has an endpoint in VS

☞ the size of a maximum matching in C is bounded

⇓

☞ the size of a minimum vertex cover in C is bounded

First Reduction Rule

Reduction Rule 1.

– If the size of a maximum matching in C is > 2k, return No.

⇓

- the size of a minimum vertex cover in C is at most 4k

- We can compute a 4k size vertex cover R in nO(1)
time.

- Towards Bound |E(C)|,
We bound the degree of each vertex in R in C.

First Reduction Rule

Reduction Rule 1.

– If the size of a maximum matching in C is > 2k, return No.

⇓

- the size of a minimum vertex cover in C is at most 4k

- We can compute a 4k size vertex cover R in nO(1)
time.

- Towards Bound |E(C)|,
We bound the degree of each vertex in R in C.

First Reduction Rule

Reduction Rule 1.

– If the size of a maximum matching in C is > 2k, return No.

⇓

- the size of a minimum vertex cover in C is at most 4k

- We can compute a 4k size vertex cover R in nO(1)
time.

- Towards Bound |E(C)|,
We bound the degree of each vertex in R in C.

First Reduction Rule

Reduction Rule 1.

– If the size of a maximum matching in C is > 2k, return No.

⇓

- the size of a minimum vertex cover in C is at most 4k

- We can compute a 4k size vertex cover R in nO(1)
time.

- Towards Bound |E(C)|,
We bound the degree of each vertex in R in C.

First Reduction Rule

Reduction Rule 1.

– If the size of a maximum matching in C is > 2k, return No.

⇓

- the size of a minimum vertex cover in C is at most 4k

- We can compute a 4k size vertex cover R in nO(1)
time.

- Towards Bound |E(C)|,
We bound the degree of each vertex in R in C.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.

Bounding the Degree of v ∈ R in C

- Consider a vertex v ∈ R with at least f(0) + 1 neighbors in I in C.

- Let U := the set of neighbours of v in I

Reduction Rule 2.

If there is no w ∈ I with |U ∩NG(w)| > f(1) then return No.

- For Yes instance, we get a vertex w ∈ I with |U ∩NG(w)| > f(1).

- We use w to identify a small set of edges that must intersect S.

Bounding the Degree of v ∈ R in C

- Consider a vertex v ∈ R with at least f(0) + 1 neighbors in I in C.

- Let U := the set of neighbours of v in I

Reduction Rule 2.

If there is no w ∈ I with |U ∩NG(w)| > f(1) then return No.

- For Yes instance, we get a vertex w ∈ I with |U ∩NG(w)| > f(1).

- We use w to identify a small set of edges that must intersect S.

Bounding the Degree of v ∈ R in C

- Consider a vertex v ∈ R with at least f(0) + 1 neighbors in I in C.

- Let U := the set of neighbours of v in I

Reduction Rule 2.

If there is no w ∈ I with |U ∩NG(w)| > f(1) then return No.

- For Yes instance, we get a vertex w ∈ I with |U ∩NG(w)| > f(1).

- We use w to identify a small set of edges that must intersect S.

Bounding the Degree of v ∈ R in C

- Consider a vertex v ∈ R with at least f(0) + 1 neighbors in I in C.

- Let U := the set of neighbours of v in I

Reduction Rule 2.

If there is no w ∈ I with |U ∩NG(w)| > f(1) then return No.

- For Yes instance, we get a vertex w ∈ I with |U ∩NG(w)| > f(1).

- We use w to identify a small set of edges that must intersect S.

Bounding the Degree of v ∈ R in C

- Consider a vertex v ∈ R with at least f(0) + 1 neighbors in I in C.

- Let U := the set of neighbours of v in I

Reduction Rule 2.

If there is no w ∈ I with |U ∩NG(w)| > f(1) then return No.

- For Yes instance, we get a vertex w ∈ I with |U ∩NG(w)| > f(1).

- We use w to identify a small set of edges that must intersect S.

Bounding the Degree of v ∈ R in C

- Consider a vertex v ∈ R with at least f(0) + 1 neighbors in I in C.

- Let U := the set of neighbours of v in I

Reduction Rule 2.

If there is no w ∈ I with |U ∩NG(w)| > f(1) then return No.

- For Yes instance, we get a vertex w ∈ I with |U ∩NG(w)| > f(1).

- We use w to identify a small set of edges that must intersect S.

Bounding the Degree of v ∈ R in C

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

v

u1 uκ w1

f (1)

f (2)

w2 wδ

d

R

I

Bounding the Degree of v ∈ R in C
- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

v

u1 uκ w1

f (1)

f (2)

w2 wδ

d

R

I

Bounding the Degree of v ∈ R in C
- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

v

u1 uκ w1

f (1)

f (2)

w2 wδ

d

R

I

Bounding the Degree of v ∈ R in C
- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

v

u1 uκ w1

f (1)

f (2)

w2 wδ

d

R

I

Branching

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

- Guess the set W ′ ⊆ Wv for which such edges belong to the solution.

- Guess the edges in S which is in b/wW ′
and R (due to invariant).

- AddW ′
to the vertex cover R

Branching

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

- Guess the set W ′ ⊆ Wv for which such edges belong to the solution.

- Guess the edges in S which is in b/wW ′
and R (due to invariant).

- AddW ′
to the vertex cover R

Branching

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

- Guess the set W ′ ⊆ Wv for which such edges belong to the solution.

- Guess the edges in S which is in b/w W ′
and R (due to invariant).

- AddW ′
to the vertex cover R

Branching

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

- Guess the set W ′ ⊆ Wv for which such edges belong to the solution.

- Guess the edges in S which is in b/w W ′
and R (due to invariant).

- AddW ′
to the vertex cover R

How is f?

f(i) =

d if i = d

d · k + k2 + k if i = d− 1

d · kd−i + kd−i+1 + {2 ·
∑d−i

j=2 k
j}+ k if 0 ≤ i ≤ d− 2

- For any 1 ≤ i ≤ d, f(i− 1) = (f(i) + k) · k + k.

How is f?

f(i) =

d if i = d

d · k + k2 + k if i = d− 1

d · kd−i + kd−i+1 + {2 ·
∑d−i

j=2 k
j}+ k if 0 ≤ i ≤ d− 2

- For any 1 ≤ i ≤ d, f(i− 1) = (f(i) + k) · k + k.

Reduced Instance

- Now each vertex in R has at most f(0) neighbors in I in the graph C.

- So total number of vertices in the conflict is at most 5k · f(0)

Annotated Dilation 2-Augmentation

Input:

G,Γ, k, R, Vc. Here |R| ≤ 5k and |Vc| = 5k · f(0)

Task:

Find a dilation 2-augmentation set S such that every edge in

S has at least one end-point outside R.

Reduced Instance

- Now each vertex in R has at most f(0) neighbors in I in the graph C.

- So total number of vertices in the conflict is at most 5k · f(0)

Annotated Dilation 2-Augmentation

Input: G,Γ, k, R, Vc. Here |R| ≤ 5k and |Vc| = 5k · f(0)
Task:

Find a dilation 2-augmentation set S such that every edge in

S has at least one end-point outside R.

Reduced Instance

- Now each vertex in R has at most f(0) neighbors in I in the graph C.

- So total number of vertices in the conflict is at most 5k · f(0)

Annotated Dilation 2-Augmentation

Input: G,Γ, k, R, Vc. Here |R| ≤ 5k and |Vc| = 5k · f(0)
Task: Find a dilation 2-augmentation set S such that every edge in

S has at least one end-point outside R.

Reduced Instance

- Now each vertex in R has at most f(0) neighbors in I in the graph C.

- So total number of vertices in the conflict is at most 5k · f(0)

Annotated Dilation 2-Augmentation

Input: G,Γ, k, R, Vc. Here |R| ≤ 5k and |Vc| = 5k · f(0)
Task: Find a dilation 2-augmentation set S such that every edge in

S has at least one end-point outside R.

Solving Annotated Instances with bounded Vc

- We cannot completely forget about the vertices outside Vc

- We do not need to keep all such vertices, but it suffices to keep one

representative from each equivalence class.

- Let O := V (G) \ Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Solving Annotated Instances with bounded Vc

- We cannot completely forget about the vertices outside Vc

- We do not need to keep all such vertices, but it suffices to keep one

representative from each equivalence class.

- Let O := V (G) \ Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Solving Annotated Instances with bounded Vc

- We cannot completely forget about the vertices outside Vc

- We do not need to keep all such vertices, but it suffices to keep one

representative from each equivalence class.

- Let O := V (G) \ Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Solving Annotated Instances with bounded Vc

- We cannot completely forget about the vertices outside Vc

- We do not need to keep all such vertices, but it suffices to keep one

representative from each equivalence class.

- Let O := V (G) \ Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Solving Annotated Instances with bounded Vc

- We cannot completely forget about the vertices outside Vc

- We do not need to keep all such vertices, but it suffices to keep one

representative from each equivalence class.

- Let O := V (G) \ Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Solving Annotated Instances with bounded Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

Solving Annotated Instances with bounded Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

Solving Annotated Instances with bounded Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

Solving Annotated Instances with bounded Vc

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

- Marking Scheme: For each non-empty O(A,B) ∈ P , we mark an

arbitrary vertex v(A,B) ∈ O(A,B).

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ.

- Smaller Instance Size: |V (G)| gets bounded by some f(k, d).

- Now we guess end-points of the solution edges.

Solving Annotated Instances with bounded Vc

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

- Marking Scheme: For each non-empty O(A,B) ∈ P , we mark an

arbitrary vertex v(A,B) ∈ O(A,B).

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ.

- Smaller Instance Size: |V (G)| gets bounded by some f(k, d).

- Now we guess end-points of the solution edges.

Solving Annotated Instances with bounded Vc

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

- Marking Scheme: For each non-empty O(A,B) ∈ P , we mark an

arbitrary vertex v(A,B) ∈ O(A,B).

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ.

- Smaller Instance Size: |V (G)| gets bounded by some f(k, d).

- Now we guess end-points of the solution edges.

Solving Annotated Instances with bounded Vc

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

- Marking Scheme: For each non-empty O(A,B) ∈ P , we mark an

arbitrary vertex v(A,B) ∈ O(A,B).

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ.

- Smaller Instance Size: |V (G)| gets bounded by some f(k, d).

- Now we guess end-points of the solution edges.

Solving Annotated Instances with bounded Vc

Observation

1 P = {O(A,B) : A,B ⊆ Vc, A ∩B = ∅} forms a partition of O.

2 |P| ≤ 3|Vc| ≤ g(k, d) for some computable function g.

- Marking Scheme: For each non-empty O(A,B) ∈ P , we mark an

arbitrary vertex v(A,B) ∈ O(A,B).

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ.

- Smaller Instance Size: |V (G)| gets bounded by some f(k, d).

- Now we guess end-points of the solution edges.

Final Result

Theorem

Dilation 2-Augmentation can be solved in time f(k, d) · nO(1)

when G is a Kd,d-free graph for any d ∈ N.

Final Result

Theorem

Dilation 2-Augmentation can be solved in time f(k, d) · nO(1)

when G is a Kd,d-free graph for any d ∈ N.

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

Conclusion

- We explored Dilation 2-Augmentation in FPT setting by restricting

either the graph class to which Γ or G could belong.

- Other considerable special graph classes include intersection graphs

such as interval graphs, unit-disk graphs, disk-graphs, string graphs.

- Exploring these problems from the perspective of FPT-approximation

Conclusion

- We explored Dilation 2-Augmentation in FPT setting by restricting

either the graph class to which Γ or G could belong.

- Other considerable special graph classes include intersection graphs

such as interval graphs, unit-disk graphs, disk-graphs, string graphs.

- Exploring these problems from the perspective of FPT-approximation

Conclusion

- We explored Dilation 2-Augmentation in FPT setting by restricting

either the graph class to which Γ or G could belong.

- Other considerable special graph classes include intersection graphs

such as interval graphs, unit-disk graphs, disk-graphs, string graphs.

- Exploring these problems from the perspective of FPT-approximation

Conclusion

- We explored Dilation 2-Augmentation in FPT setting by restricting

either the graph class to which Γ or G could belong.

- Other considerable special graph classes include intersection graphs

such as interval graphs, unit-disk graphs, disk-graphs, string graphs.

- Exploring these problems from the perspective of FPT-approximation

	Problem Definition
	Background
	Our Results
	Overview of Main Result
	Conclusion

