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Basic Definitions

• Graph embedded in a Metric Space

An edge weighted graph G is embedded onM = (V, dM )

⇓
for each edge e ∈ E(G), weight (e) = dM (u, v)

• G has dialation t

for each pair u, v ∈ V (G),

dG(u, v) ≤ t · dM (u, v)
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Problem Definition

Dilation t-Augmentation

Input: A graphG embedded in a metric spaceM on V (G), k ∈ N.
Task: Add k edges to G such that dialation becomes at most t.

☞ For which M, Dilation t-Augmentation admit an FPT algorithm?

☞ For which graph class G, Dilation t-Augmentation admit an

FPT algorithm?

☞ For which pairs, (G,M), Dilation t-Augmentation admit an

FPT algorithm?
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What is known?

Diameter 2-Augmentation

Input: A graph G, an integer k.
Task: Add k edges to G such that diameter of G becomes 2.

☞ This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM ’13]

⇓

☞ Dilation t-Augmentation can not be solved in time g(k) · nO(t)
?
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Related Problem 1

For a given real number t > 1, we say that G′ ⊆ G is a t-spanner of G, if

the dilation of G′
with respect to G, i.e. maxu,v

dG′ (u,v)
dG(u,v) is at most t.

Spanner with few edges

Input: A connected weighted graph G, a real number t.
Question: Does G contains a t-spanner with few edges?

☞ Any connected weighted graph with n vertices contains a t-spanner

with O(tn1+ 2
t+1 ) edges [Baswana and Sen.; ICALP ’03]

☞ Deciding whether a geometric graph contains a t-spanner with ≤ k
edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT ’06]
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Related Problem 2

For a given real number t > 1, a geometric graph G (drawn in straight line

in plane) is a t-spanner or has dilation t ifmaxu,v
dG(u,v)
|uv| is at most t.

Minimum Dialation

Input: A set of n points in the plane, a positive integer k.
Task: Compute a geometric minimum-dilation graph using k edges

☞ This problem is NP-hard [ Giannopoulos, Klein, Knauer, Kutz, and

Marx.; IJCGA ’10]
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Our Results

G Metric (Γ) Parameter(s) t Complexity

Kd,d-free General k + d 2 FPT

Star forest General k 3 W[1]-hard

General Star k 3 W[1]-hard

General Tree k 2 P

General Max deg-δ k + t+ δ t FPT

Max deg-δ General k + t+ δ t FPT

Subcubic (1, w) -weighted k 2 + ε W[1]-hard

Edgeless General k 2 NP-hard

General Clique k 2 W[2]-hard
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It does not contain a complete bipartite graph as a subgraph.

K4,4

It includes trees, planar graphs, H minor-free graphs, graphs of bounded

expansion, nowhere dense graphs, and graphs of bounded degeneracy
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Conflict versus Adjacent Conflicts

u and v are said to be in conflict if dG(u, v) > t · dM (u, v).

Definition u and v are said to be in adjacent conflict if

1 u and v are in conflict.

2 u and v are adjacent in Γ.

Lemma

- Consider a set of edges S

- G+ S is conflict-free ⇔ G+ S is adjacent conflict-free.

⇓

☞ We only need to focus on adjacent conflicts
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Conflict Graph and Vertex Cover

Definition (Conflict Graph C)
- It captures all adjacent conflicts.

- V (C) = V (G)

- E(C) : uv ∈ E(C)⇔ u and v are in adjacent conflict.

Lemma

- Consider a solution S

- Every edge in E(C) has an endpoint in VS

☞ the size of a maximum matching in C is bounded

⇓

☞ the size of a minimum vertex cover in C is bounded
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First Reduction Rule

Reduction Rule 1.

– If the size of a maximum matching in C is > 2k, return No.

⇓

- the size of a minimum vertex cover in C is at most 4k

- We can compute a 4k size vertex cover R in nO(1)
time.

- Towards Bound |E(C)|,
We bound the degree of each vertex in R in C.
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Brief Sketch

- First we guess the edges of S that have both end-points in R

- Now we are not allowed to add an edge to a solution that does not

have an end-point outside R (invariant).

- Consider a vertex of R that have high degrees in C

- We will add at least one vertex from I = V ∖R to R

- We add one new edge to S.

- So in each step, the budget k reduces by at least one

- Stop when k = 0 or degree of each vertex of R gets bounded.
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Branching

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.

- Guess the set W ′ ⊆ Wv for which such edges belong to the solution.

- Guess the edges in S which is in b/wW ′
and R (due to invariant).

- AddW ′
to the vertex cover R
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- Guess the set W ′ ⊆ Wv for which such edges belong to the solution.

- Guess the edges in S which is in b/w W ′
and R (due to invariant).

- AddW ′
to the vertex cover R



Branching

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a setWv such that

1 |Wv| < d

2 For Yes instance, S ∩ {(v, w) : w ∈ Wv} ≠ ∅.
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f(i) =


d if i = d
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j}+ k if 0 ≤ i ≤ d− 2

- For any 1 ≤ i ≤ d, f(i− 1) = (f(i) + k) · k + k.
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- Now each vertex in R has at most f(0) neighbors in I in the graph C.

- So total number of vertices in the conflict is at most 5k · f(0)

Annotated Dilation 2-Augmentation

Input:

G,Γ, k, R, Vc. Here |R| ≤ 5k and |Vc| = 5k · f(0)

Task:

Find a dilation 2-augmentation set S such that every edge in

S has at least one end-point outside R.
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Solving Annotated Instances with bounded Vc

- We cannot completely forget about the vertices outside Vc

- We do not need to keep all such vertices, but it suffices to keep one

representative from each equivalence class.

- Let O := V (G) \ Vc

Definition For each A,B ⊆ Vc with A ∩ B = ∅, let O(A,B) denote the
set of vertices v ∈ O satisfying

1 A = {u : u ∈ Vc, dG(u, v) = 1}, and
2 B = {w : w ∈ Vc, (v, w) ̸∈ E(G), dΓ(v, w) = 1}.
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