Multivariate Exploration of Metric Dilation

Aritra Banik¹, Fedor V. Fomin², Petr A. Golovach², Tanmay Inamdar³, Satyabrata Jana⁴, Saket Saurabh^{2,5}

¹NISER Bhubaneswar, India

²UiB, Bergen, Norway ³IIT Jodhpur, India

⁴University of Warwick, UK

⁵IMSc, Chennai, India

Jena, Germany 05 Mar 2025

Outline

1 Problem Definition

- 2 Background
- **3** Our Results
- **4** Overview of Main Result
- **5** Conclusion

• Graph embedded in a Metric Space

• Graph embedded in a Metric Space

An edge weighted graph G is embedded on $\mathcal{M} = (V, d_M)$

• Graph embedded in a Metric Space

An edge weighted graph G is embedded on $\mathcal{M} = (V, d_M)$

for each edge $e \in E(G)$, weight $(e) = d_M(u, v)$

• Graph embedded in a Metric Space

An edge weighted graph G is embedded on $\mathcal{M} = (V, d_M)$

for each edge $e \in E(G)$, weight $(e) = d_M(u, v)$

• G has dialation t

• Graph embedded in a Metric Space

An edge weighted graph G is embedded on $\mathcal{M} = (V, d_M)$

for each edge $e \in E(G)$, weight $(e) = d_M(u, v)$

• G has dialation t

for each pair $u, v \in V(G)$,

 $d_G(u,v) \le t \cdot d_M(u,v)$

G

 $d_{\Gamma}(v_1, v_3) = 1 \qquad d_G(v_1, v_3) = 3 \qquad \qquad d_{\Gamma}(v_5, v_7) = 1 \qquad d_G(v_5, v_7) = 4$

 $\begin{aligned} d_{\Gamma}(v_1, v_3) &= 1 & d_G(v_1, v_3) = 3 & d_{\Gamma}(v_5, v_7) = 1 & d_G(v_5, v_7) = 4 \\ d_{G+S}(v_1, v_3) &= 1 & d_{G+S}(v_5, v_7) = 2 \end{aligned}$

— DILATION <i>t</i> -AUGMENTATION	
Input:	
Task:	

DILATION *t*-AUGMENTATION

Input: A graph *G* embedded in a metric space \mathcal{M} on V(G), $k \in \mathbb{N}$. **Task:**

DILATION *t*-AUGMENTATION

Input: A graph *G* embedded in a metric space \mathcal{M} on V(G), $k \in \mathbb{N}$. **Task:** Add *k* edges to *G* such that dialation becomes at most *t*.

DILATION *t*-AUGMENTATION

Input: A graph *G* embedded in a metric space \mathcal{M} on V(G), $k \in \mathbb{N}$. **Task:** Add k edges to *G* such that dialation becomes at most *t*.

For which \mathcal{M} , DILATION *t*-AUGMENTATION admit an FPT algorithm?

DILATION *t*-AUGMENTATION

Input: A graph *G* embedded in a metric space \mathcal{M} on V(G), $k \in \mathbb{N}$. **Task:** Add k edges to *G* such that dialation becomes at most *t*.

- For which \mathcal{M} , DILATION *t*-AUGMENTATION admit an FPT algorithm?
- For which graph class \mathcal{G} , DILATION *t*-AUGMENTATION admit an FPT algorithm?

DILATION *t*-AUGMENTATION

Input: A graph *G* embedded in a metric space \mathcal{M} on V(G), $k \in \mathbb{N}$. **Task:** Add k edges to *G* such that dialation becomes at most *t*.

- For which \mathcal{M} , DILATION *t*-AUGMENTATION admit an FPT algorithm?
- For which graph class \mathcal{G} , DILATION *t*-AUGMENTATION admit an FPT algorithm?
- For which pairs, $(\mathcal{G}, \mathcal{M})$, DILATION *t*-AUGMENTATION admit an FPT algorithm?

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

DIAMETER 2-AUGMENTATION

Input:

Task:

DIAMETER 2-AUGMENTATION

Input: A graph G, an integer k. **Task:**

DIAMETER 2-AUGMENTATION

Input: A graph G, an integer k. **Task:** Add k edges to G such that diameter of G becomes 2.

DIAMETER 2-AUGMENTATION

Input: A graph G, an integer k. **Task:** Add k edges to G such that diameter of G becomes 2.

This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM '13]

DIAMETER 2-AUGMENTATION

Input: A graph G, an integer k. **Task:** Add k edges to G such that diameter of G becomes 2.

This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM '13]

DIAMETER 2-AUGMENTATION Input: A graph G, an integer k. Task: Add k edges to G such that diameter of G becomes 2.

This problem is W[2]-hard [Gao, Hare, and Nastos.; DAM '13]

DILATION *t*-AUGMENTATION can not be solved in time $g(k) \cdot n^{\mathcal{O}(t)}$?

For a given real number t > 1, we say that $G' \subseteq G$ is a *t*-spanner of *G*, if the dilation of G' with respect to *G*, i.e. $\max_{u,v} \frac{d_{G'}(u,v)}{d_G(u,v)}$ is at most *t*.

For a given real number t > 1, we say that $G' \subseteq G$ is a *t*-spanner of *G*, if the dilation of G' with respect to *G*, i.e. $\max_{u,v} \frac{d_{G'}(u,v)}{d_G(u,v)}$ is at most *t*.

```
- Spanner with few edges
Input:
Question:
```

For a given real number t > 1, we say that $G' \subseteq G$ is a *t*-spanner of *G*, if the dilation of G' with respect to *G*, i.e. $\max_{u,v} \frac{d_{G'}(u,v)}{d_G(u,v)}$ is at most *t*.

- Spanner with few edges

Input: A connected weighted graph G, a real number t. **Question:**

For a given real number t > 1, we say that $G' \subseteq G$ is a *t*-spanner of *G*, if the dilation of G' with respect to *G*, i.e. $\max_{u,v} \frac{d_{G'}(u,v)}{d_G(u,v)}$ is at most *t*.

- Spanner with few edges

Input: A connected weighted graph G, a real number t. **Question:** Does G contains a t-spanner with **few** edges?

For a given real number t > 1, we say that $G' \subseteq G$ is a *t*-spanner of *G*, if the dilation of G' with respect to *G*, i.e. $\max_{u,v} \frac{d_{G'}(u,v)}{d_G(u,v)}$ is at most *t*.

- Spanner with few edges

Input: A connected weighted graph G, a real number t. **Question:** Does G contains a t-spanner with few edges?

Any connected weighted graph with n vertices contains a t-spanner with $\mathcal{O}(tn^{1+\frac{2}{t+1}})$ edges [Baswana and Sen.; ICALP '03]
For a given real number t > 1, we say that $G' \subseteq G$ is a *t*-spanner of *G*, if the dilation of G' with respect to *G*, i.e. $\max_{u,v} \frac{d_{G'}(u,v)}{d_G(u,v)}$ is at most *t*.

- Spanner with few edges

Input: A connected weighted graph G, a real number t. **Question:** Does G contains a t-spanner with **few** edges?

- Any connected weighted graph with n vertices contains a t-spanner with $O(tn^{1+\frac{2}{t+1}})$ edges [Baswana and Sen.; ICALP '03]
- Deciding whether a geometric graph contains a *t*-spanner with $\leq k$ edges is NP-hard? [Gudmundsson and Michiel Smid .; SWAT '06]

For a given real number t > 1, a geometric graph G (drawn in straight line in plane) is a *t*-spanner or has dilation t if $\max_{u,v} \frac{d_G(u,v)}{|uv|}$ is at most t.

For a given real number t > 1, a geometric graph G (drawn in straight line in plane) is a t-spanner or has dilation t if $\max_{u,v} \frac{d_G(u,v)}{|uv|}$ is at most t.

— MINIMUM DIALATION	
Input: Task:	

For a given real number t > 1, a geometric graph G (drawn in straight line in plane) is a t-spanner or has dilation t if $\max_{u,v} \frac{d_G(u,v)}{|uv|}$ is at most t.

MINIMUM DIALATION

Input: A set of n points in the plane, a positive integer k. **Task:**

For a given real number t > 1, a geometric graph G (drawn in straight line in plane) is a t-spanner or has dilation t if $\max_{u,v} \frac{d_G(u,v)}{|uv|}$ is at most t.

MINIMUM DIALATION

Input: A set of n points in the plane, a positive integer k. **Task:** Compute a geometric minimum-dilation graph using k edges

For a given real number t > 1, a geometric graph G (drawn in straight line in plane) is a t-spanner or has dilation t if $\max_{u,v} \frac{d_G(u,v)}{|uv|}$ is at most t.

MINIMUM DIALATION

Input: A set of n points in the plane, a positive integer k. **Task:** Compute a geometric minimum-dilation graph using k edges

This problem is NP-hard [Giannopoulos, Klein, Knauer, Kutz, and Marx.; IJCGA '10]

Outline

1 Problem Definition

2 Background

3 Our Results

4 Overview of Main Result

5 Conclusion

Our Results

Our Results

${old G}$	Metric (Γ)	Parameter(s)	t	Complexity
$\mathcal{K}_{d,d} ext{-free}$	General	k+d	2	FPT
Star forest	General	k	3	W[1]-hard
General	Star	k	3	W[1]-hard
General	Tree	k	2	Р
General	Max deg- δ	$k+t+\delta$	t	FPT
Max deg- δ	General	$k+t+\delta$	t	FPT
Subcubic	$\left(1,w ight)$ -weighted	k	$2 + \varepsilon$	W[1]-hard
Edgeless	General	k	2	NP-hard
General	Clique	k	2	W[2]-hard

This Talk

${old G}$	Metric (Γ)	Parameter(s)	t	Complexity
$\mathcal{K}_{d,d} ext{-free}$	General	k+d	2	FPT
Star forest	General	k	3	W[1]-hard
General	Star	k	3	W[1]-hard
General	Tree	k	2	Р
General	Max deg- δ	$k+t+\delta$	t	FPT
Max deg- δ	General	$k+t+\delta$	t	FPT
Subcubic	(1,w) -weighted	k	$2 + \varepsilon$	W[1]-hard
Edgeless	General	k	2	NP-hard
General	Clique	k	2	W[2]-hard

Outline

- **1** Problem Definition
- 2 Background
- **3** Our Results
- **4** Overview of Main Result

5 Conclusion

It does not contain a complete bipartite graph as a subgraph.

It does not contain a **complete bipartite** graph as a subgraph.

It does not contain a complete bipartite graph as a subgraph.

It includes trees, planar graphs, *H* minor-free graphs, graphs of bounded expansion, nowhere dense graphs, and graphs of bounded degeneracy

u and v are said to be in **conflict** if $d_G(u, v) > t \cdot d_M(u, v)$.

u and v are said to be in **conflict** if $d_G(u, v) > t \cdot d_M(u, v)$.

Definition u and v are said to be in **adjacent conflict** if

- **1** u and v are in conflict.
- **2** u and v are adjacent in Γ .

u and *v* are said to be in **conflict** if $d_G(u, v) > t \cdot d_M(u, v)$.

Definition *u* and *v* are said to be in **adjacent conflict** if

1 u and v are in conflict.

2 u and v are adjacent in Γ .

Lemma

- Consider a set of edges S
- G + S is conflict-free $\Leftrightarrow G + S$ is adjacent conflict-free.

u and *v* are said to be in **conflict** if $d_G(u, v) > t \cdot d_M(u, v)$.

Definition *u* and *v* are said to be in **adjacent conflict** if

1 u and v are in conflict.

2 u and v are adjacent in Γ .

Lemma

- Consider a set of edges S
- G + S is conflict-free $\Leftrightarrow G + S$ is adjacent conflict-free.

Re only need to focus on adjacent conflicts

Our First Target

Our First Target

Bound the number of conflict pairs.

Definition (Conflict Graph C**)**

- It captures all adjacent conflicts.
- $V(\mathbb{C}) = V(G)$
- $E(\mathbb{C}) : uv \in E(\mathbb{C}) \Leftrightarrow u$ and v are in adjacent conflict.

Definition (Conflict Graph C**)**

- It captures all adjacent conflicts.
- $V(\mathbb{C}) = V(G)$
- $E(\mathbb{C}) : uv \in E(\mathbb{C}) \Leftrightarrow u$ and v are in adjacent conflict.

Lemma

- Consider a solution S
- Every edge in $E(\mathbb{C})$ has an endpoint in V_S

Definition (Conflict Graph C**)**

- It captures all adjacent conflicts.
- $V(\mathbb{C}) = V(G)$
- $E(\mathbb{C}) : uv \in E(\mathbb{C}) \Leftrightarrow u$ and v are in adjacent conflict.

Lemma

- Consider a solution S
- Every edge in $E(\mathbb{C})$ has an endpoint in V_S

\mathbb{R} the size of a maximum matching in \mathbb{C} is bounded

Definition (Conflict Graph C**)**

- It captures all adjacent conflicts.
- $V(\mathbb{C}) = V(G)$
- $E(\mathbb{C}) : uv \in E(\mathbb{C}) \Leftrightarrow u$ and v are in adjacent conflict.

Lemma

- Consider a solution S
- Every edge in $E(\mathbb{C})$ has an endpoint in V_S

\mathbb{R} the size of a maximum matching in \mathbb{C} is bounded

\mathbb{R} the size of a minimum vertex cover in \mathbb{C} is bounded

Reduction Rule 1.

- If the size of a maximum matching in \mathbb{C} is > 2k, return No.

Reduction Rule 1.

- If the size of a maximum matching in \mathbb{C} is > 2k, return No.

₩

- the size of a minimum vertex cover in $\mathbb C$ is at most 4k

Reduction Rule 1.

- If the size of a maximum matching in \mathbb{C} is > 2k, return No.

$\mathbf{\Psi}$

- the size of a minimum vertex cover in $\mathbb C$ is at most 4k
- We can compute a 4k size vertex cover R in $n^{\mathcal{O}(1)}$ time.

Reduction Rule 1.

– If the size of a maximum matching in \mathbb{C} is > 2k, return No.

₩

- the size of a minimum vertex cover in $\mathbb C$ is at most 4k
- We can compute a 4k size vertex cover R in $n^{\mathcal{O}(1)}$ time.
- Towards Bound $|E(\mathbb{C})|$, We bound the degree of each vertex in R in \mathbb{C} .

Brief Sketch

Brief Sketch

- First we guess the edges of S that have both end-points in R

Brief Sketch

- First we guess the edges of S that have both end-points in R
- Now we are not allowed to add an edge to a solution that does not have an end-point outside *R* (invariant).
- First we guess the edges of S that have both end-points in R
- Now we are not allowed to add an edge to a solution that does not have an end-point outside R (invariant).
- Consider a vertex of R that have high degrees in $\mathbb C$

- First we guess the edges of S that have both end-points in R
- Now we are not allowed to add an edge to a solution that does not have an end-point outside R (invariant).
- Consider a vertex of R that have high degrees in $\mathbb C$
- We will add at least one vertex from $I = V \smallsetminus R$ to R

- First we guess the edges of S that have both end-points in R
- Now we are not allowed to add an edge to a solution that does not have an end-point outside R (invariant).
- Consider a vertex of R that have high degrees in $\mathbb C$
- We will add at least one vertex from $I = V \smallsetminus R$ to R
- We add one new edge to S.

- First we guess the edges of S that have both end-points in R
- Now we are not allowed to add an edge to a solution that does not have an end-point outside R (invariant).
- Consider a vertex of R that have high degrees in $\mathbb C$
- We will add at least one vertex from $I = V \smallsetminus R$ to R
- We add one new edge to S.
- So in each step, the budget *k* reduces by at least one

- First we guess the edges of S that have both end-points in R
- Now we are not allowed to add an edge to a solution that does not have an end-point outside *R* (invariant).
- Consider a vertex of R that have high degrees in $\mathbb C$
- We will add at least one vertex from $I = V \smallsetminus R$ to R
- We add one new edge to S.
- So in each step, the budget k reduces by at least one
- Stop when k = 0 or degree of each vertex of R gets bounded.

- Consider a vertex $v \in R$ with at least f(0) + 1 neighbors in I in \mathbb{C} .

- Consider a vertex $v \in R$ with at least f(0) + 1 neighbors in I in \mathbb{C} .
- Let $U \coloneqq$ the set of neighbours of v in I

- Consider a vertex $v \in R$ with at least f(0) + 1 neighbors in I in \mathbb{C} .
- Let $U \coloneqq$ the set of neighbours of v in I

Reduction Rule 2.

If there is no $w \in I$ with $|U \cap N_G(w)| > f(1)$ then return No.

- Consider a vertex $v \in R$ with at least f(0) + 1 neighbors in I in \mathbb{C} .
- Let $U \coloneqq$ the set of neighbours of v in I

Reduction Rule 2.

If there is no $w \in I$ with $|U \cap N_G(w)| > f(1)$ then return No.

- For Yes instance, we get a vertex $w \in I$ with $|U \cap N_G(w)| > f(1)$.

- Consider a vertex $v \in R$ with at least f(0) + 1 neighbors in I in \mathbb{C} .
- Let $U \coloneqq$ the set of neighbours of v in I

Reduction Rule 2.

If there is no $w \in I$ with $|U \cap N_G(w)| > f(1)$ then return No.

- For Yes instance, we get a vertex $w \in I$ with $|U \cap N_G(w)| > f(1)$.
- We use w to identify a small set of edges that must intersect S.

- We use w to identify a small set of edges that must intersect S.

- We use w to identify a small set of edges that must intersect S.

Lemma. There exists a polynomial-time algorithm to find a set W_v such that **1** $|W_v| < d$ **2** For Yes instance, $S \cap \{(v, w) : w \in W_v\} \neq \emptyset$.

- We use w to identify a small set of edges that must intersect S.

Lemma.

- **1** $|W_v| < d$
- **2** For Yes instance, $S \cap \{(v, w) : w \in W_v\} \neq \emptyset$.

- We use w to identify a small set of edges that must intersect S.

Lemma.

There exists a polynomial-time algorithm to find a set W_v such that

 $|W_v| < d$ $\text{ For Yes instance, } S \cap \{(v, w) : w \in W_v\} \neq \emptyset.$

- We use w to identify a small set of edges that must intersect S.

Lemma.

- **1** $|W_v| < d$ **2** For Yes instance, $S \cap \{(v, w) : w \in W_v\} \neq \emptyset$.
- Guess the set $W' \subseteq W_v$ for which such edges belong to the solution.

- We use w to identify a small set of edges that must intersect S.

Lemma.

- 1 $|W_v| < d$ 2 For Yes instance, $S \cap \{(v, w) : w \in W_v\} \neq \emptyset$.
- Guess the set $W' \subseteq W_v$ for which such edges belong to the solution.
- Guess the edges in S which is in b/w W' and R (due to invariant).

- We use w to identify a small set of edges that must intersect S.

Lemma.

- 1 $|W_v| < d$ 2 For Yes instance, $S \cap \{(v, w) : w \in W_v\} \neq \emptyset$.
- Guess the set $W' \subseteq W_v$ for which such edges belong to the solution.
- Guess the edges in S which is in b/w W' and R (due to invariant).
- Add W' to the vertex cover R

How is f?

How is f?

$$f(i) = \begin{cases} d & \text{if } i = d \\ d \cdot k + k^2 + k & \text{if } i = d - 1 \\ d \cdot k^{d-i} + k^{d-i+1} + \{2 \cdot \sum_{j=2}^{d-i} k^j\} + k & \text{if } 0 \le i \le d - 2 \end{cases}$$

- For any $1 \leq i \leq d$, $f(i-1) = (f(i)+k) \cdot k + k$.

- Now each vertex in R has at most f(0) neighbors in I in the graph \mathbb{C} .

- Now each vertex in R has at most f(0) neighbors in I in the graph \mathbb{C} .
- So total number of vertices in the conflict is at most $5k \cdot f(0)$

- Now each vertex in R has at most f(0) neighbors in I in the graph \mathbb{C} .
- So total number of vertices in the conflict is at most $5k \cdot f(0)$

ANNOTATED DILATION 2-AUGMENTATION

Input: G, Γ, k, R, V_c . Here $|R| \le 5k$ and $|V_c| = 5k \cdot f(0)$ **Task:** Find a dilation 2-augmentation set S such that every edge in

S has at least one end-point outside R.

- We cannot completely forget about the vertices outside V_c

- We cannot completely forget about the vertices outside V_c
- We do not need to keep all such vertices, but it suffices to keep **one representative** from each **equivalence class**.

- We cannot completely forget about the vertices outside V_c
- We do not need to keep all such vertices, but it suffices to keep **one representative** from each **equivalence class**.
- Let $O \coloneqq V(G) \setminus V_c$

- We cannot completely forget about the vertices outside V_c
- We do not need to keep all such vertices, but it suffices to keep **one representative** from each **equivalence class**.
- Let $O \coloneqq V(G) \setminus V_c$

Definition For each $A, B \subseteq V_c$ with $A \cap B = \emptyset$, let O(A, B) denote the set of vertices $v \in O$ satisfying

- **1** $A = \{u : u \in V_c, d_G(u, v) = 1\}, \text{ and }$
- **2** $B = \{ w : w \in V_c, (v, w) \notin E(G), d_{\Gamma}(v, w) = 1 \}.$

Definition For each $A, B \subseteq V_c$ with $A \cap B = \emptyset$, let O(A, B) denote the set of vertices $v \in O$ satisfying **1** $A = \{u : u \in V_c, d_G(u, v) = 1\}$, and **2** $B = \{w : w \in V_c, (v, w) \notin E(G), d_{\Gamma}(v, w) = 1\}$.

Definition For each $A, B \subseteq V_c$ with $A \cap B = \emptyset$, let O(A, B) denote the set of vertices $v \in O$ satisfying **1** $A = \{u : u \in V_c, d_G(u, v) = 1\}$, and

2 $B = \{ w : w \in V_c, (v, w) \notin E(G), d_{\Gamma}(v, w) = 1 \}.$

Observation

Definition For each $A, B \subseteq V_c$ with $A \cap B = \emptyset$, let O(A, B) denote the set of vertices $v \in O$ satisfying **1** $A = \{u : u \in V_c, d_G(u, v) = 1\}$, and

2 $B = \{w : w \in V_c, (v, w) \notin E(G), d_{\Gamma}(v, w) = 1\}.$

Observation

P = {O(A, B) : A, B ⊆ V_c, A ∩ B = ∅} forms a partition of O.
 |P| ≤ 3^{|V_c|} ≤ g(k, d) for some computable function g.

Observation

P = {O(A, B) : A, B ⊆ V_c, A ∩ B = ∅} forms a partition of O.
 |P| ≤ 3^{|V_c|} ≤ g(k, d) for some computable function g.

Observation

- P = {O(A, B) : A, B ⊆ V_c, A ∩ B = ∅} forms a partition of O.
 |P| ≤ 3^{|V_c|} ≤ g(k, d) for some computable function g.
- **Marking Scheme:** For each non-empty $O(A, B) \in \mathcal{P}$, we mark an arbitrary vertex $v(A, B) \in O(A, B)$.

Observation

- P = {O(A, B) : A, B ⊆ V_c, A ∩ B = ∅} forms a partition of O.
 |P| ≤ 3^{|V_c|} ≤ g(k, d) for some computable function g.
- **Marking Scheme:** For each non-empty $O(A, B) \in \mathcal{P}$, we mark an arbitrary vertex $v(A, B) \in O(A, B)$.

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ .
Solving Annotated Instances with bounded V_c

Observation

- P = {O(A, B) : A, B ⊆ V_c, A ∩ B = ∅} forms a partition of O.
 |P| ≤ 3^{|V_c|} ≤ g(k, d) for some computable function g.
- **Marking Scheme:** For each non-empty $O(A, B) \in \mathcal{P}$, we mark an arbitrary vertex $v(A, B) \in O(A, B)$.

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ .

- Smaller Instance Size: |V(G)| gets bounded by some f(k, d).

Solving Annotated Instances with bounded V_c

Observation

- P = {O(A, B) : A, B ⊆ V_c, A ∩ B = ∅} forms a partition of O.
 |P| ≤ 3^{|V_c|} ≤ g(k, d) for some computable function g.
- **Marking Scheme:** For each non-empty $O(A, B) \in \mathcal{P}$, we mark an arbitrary vertex $v(A, B) \in O(A, B)$.

Reduction Rule 3.

Eliminate all the unmarked vertices of O from G and Γ .

- Smaller Instance Size: |V(G)| gets bounded by some f(k, d).
- Now we guess end-points of the solution edges.

Final Result

Final Result

Theorem

DILATION 2-AUGMENTATION can be solved in time $f(k, d) \cdot n^{\mathcal{O}(1)}$ when G is a $\mathcal{K}_{d,d}$ -free graph for any $d \in \mathbb{N}$.

Outline

- **1** Problem Definition
- **2** Background
- **3** Our Results
- **4** Overview of Main Result

- We explored Dilation 2-Augmentation in FPT setting by restricting either the graph class to which Γ or *G* could belong.

- We explored Dilation 2-Augmentation in FPT setting by restricting either the graph class to which Γ or *G* could belong.
- Other considerable special graph classes include intersection graphs such as interval graphs, unit-disk graphs, disk-graphs, string graphs.

- We explored Dilation 2-Augmentation in FPT setting by restricting either the graph class to which Γ or *G* could belong.
- Other considerable special graph classes include intersection graphs such as interval graphs, unit-disk graphs, disk-graphs, string graphs.
- Exploring these problems from the perspective of FPT-approximation

Thank you!