
Nearly-Optimal Algorithm for Non-
Clairvoyant Service with Delay

Noam Touitou

Online Service with Delay (OSD)

• Requests arrive on a metric space, over time.

• Requests accumulate delay cost while pending
• Delay described as nondecreasing function.

• The algorithm has a single server, which serves requests.
• Serving request = traversing it with the server.
• Server movements are instantaneous.

• Goal: Minimize movement cost + delay cost.

Introduction

• Total cost: movement cost (green edges) plus delay cost (green plot points).

Online Service with Deadlines

4

• In service with deadlines, the delay functions are replaced with deadline times.

• This is a special case of delay!

Clairvoyance

• A crucial property of the model is whether the algorithm knows future delay of current requests.

• If the answer is yes, we’re in the clairvoyant model.

• Otherwise, the model is non-clairvoyant.

• We’ll focus on the non-clairvoyant model in this talk.

Previous Work

• Let:

• 𝑛𝑛 be the number of nodes in the metric space.

• 𝑚𝑚 be the number of requests in the input.

• In the clairvoyant model, there exists a line of work yielding polylogarithmic competitiveness:

• An 𝑂𝑂 log4 𝑛𝑛 -competitive randomized algorithm. [Azar-Ganesh-Ge-Panigrahi, STOC’17]

• Where 𝑛𝑛 is the number of points in the metric space.

• An 𝑂𝑂 log2 𝑛𝑛 -competitive randomized algorithm. [Azar-T, FOCS’19]

• An 𝑂𝑂 log min 𝑛𝑛,𝑚𝑚 -competitive deterministic algorithm. [T, STOC’23]

• In the non-clairvoyant model, there exist Ω 𝑛𝑛 and Ω 𝑚𝑚 lower bounds. [AGGP, STOC ‘17]

• In this talk, we introduce an upper bound that nearly matches both lower bounds.

Our Results

• We present the first algorithm for non-clairvoyant OSD.

• The algorithm is 𝑂𝑂 min 𝑛𝑛 log𝑛𝑛 , 𝑚𝑚 log𝑚𝑚 competitive.

• This upper bound applies to the deadline special case as well.

• We’ll focus on O 𝑛𝑛 log 𝑛𝑛 in this talk.

• This upper bound matches the Ω 𝑛𝑛 and Ω 𝑚𝑚 lower bounds up to a logarithmic factor.

The Algorithm

Service Structure

• The algorithm consists of services, which are instantaneous
movements of the server.

• The algorithm waits until some set of requests accumulates
sufficient delay cost, triggering a service:

1. The algorithm chooses a radius 𝑅𝑅 in which to move the server.

2. The algorithm serves some pending requests in the ball, then
returns to its initial position.

3. Sometimes, the server rests at some location within the ball.

Delay Counters and Residual Delays

• For every location 𝑣𝑣, and for every integer ℓ, we maintain residual delay counters 𝑔𝑔𝑣𝑣,ℓ.

• Every pending request 𝑞𝑞 has level ℓ𝑞𝑞 that increases over time (initially −∞).

• The residual delay counter 𝑔𝑔𝑣𝑣,ℓ grows with the delay of level-ℓ requests on 𝑣𝑣.

• The counters can also be decreased by the algorithm (can be seen as “paying off” delay).

Domes

• For every ℓ, we consider the total residual delay of a dome around the server. That is,

• The sum of positive residual delay counters 𝑔𝑔𝑣𝑣,ℓ for 𝑣𝑣 at distance at most 2ℓ−1 from the server, plus

• The sum of positive 𝑔𝑔𝑣𝑣,ℓ′ for ℓ′ ≤ ℓ and 𝑣𝑣 at distance between 2ℓ−1 and 2ℓ from the server.

• When the total residual delay of some dome ℓ exceeds 2ℓ, a service of level ℓ + 4 is started.

Services

• A service 𝜆𝜆 of level ℓ𝜆𝜆 serves requests in a 𝑅𝑅 ≔ 2ℓ𝜆𝜆-radius ball.

• There are three types of services: primary, secondary and tertiary.

• All services start by paying off any positive 𝑔𝑔𝑣𝑣,ℓ to zero, for 𝑣𝑣 in the 𝑅𝑅-radius ball and ℓ ≤ ℓ𝜆𝜆.

• Primary/secondary services serve many requests, while tertiary services greedily serve a single request.

• Primary/Secondary cost = 𝑂𝑂 𝑛𝑛 ⋅ 𝑅𝑅

• Tertiary cost = 𝑂𝑂(𝑅𝑅)

• We first describe primary and secondary services.

Primary+Secondary Services
• A primary/secondary service 𝜆𝜆 considers all locations 𝑉𝑉𝜆𝜆 of pending requests inside the
𝑅𝑅 = 2ℓ𝜆𝜆 radius ball.

• Intuitively:

• Serve cost-effective, dense locations.

• Pay off future delay in sparse locations.

• It traverses a subset 𝑉𝑉𝜆𝜆
′ ⊆ 𝑉𝑉𝜆𝜆, where:

• The average traversal cost is O 𝑅𝑅
𝑛𝑛

per location in 𝑉𝑉𝜆𝜆
′.

• Every subset of 𝑉𝑉𝜆𝜆 ∖ 𝑉𝑉𝜆𝜆
′ would cost an average of > 𝑅𝑅

𝑛𝑛
per location to traverse.

• (The procedure for obtaining 𝑉𝑉𝜆𝜆
′ uses a prize-collecting algorithm for Steiner tree, and is similar to that used

for network design problems in [T, ICALP’23].)

• For each v ∈ 𝑉𝑉𝜆𝜆 ∖ 𝑉𝑉𝜆𝜆
′ the service then decrements 𝑔𝑔𝑣𝑣,ℓ𝜆𝜆 by 𝑅𝑅

𝑛𝑛
.

Primary+Secondary Services

• Additionally, Unserved pending requests of level ≤ ℓ𝜆𝜆 in the ball are upgraded to ℓ𝜆𝜆.

• This also marks the requests as “witnesses” to 𝜆𝜆.

• If delay is concentrated in a small-radius ball, the server might move to the center of that ball. (This only happens
in primary services.)

Primary+Secondary Services

• When the service 𝜆𝜆 is triggered by dome ℓ𝜆𝜆 − 4, are there requests of distance class strictly smaller than
ℓ𝜆𝜆 − 4 with positive delay? (That is, a request in the “upper dome”.)

• “No” → 𝜆𝜆 is primary.

• “Yes” → 𝜆𝜆 is secondary (or tertiary).

Charging intuition

• Before describing tertiary services, we describe the intuition for such services.

• Intuitively, primary services are triggered by delay cost for which the optimal solution cannot prepare; their cost
can thus charged to the optimal solution.

• Secondary services are trickier. Note that 𝜆𝜆 is triggered by a request 𝑞𝑞 in the “upper dome”, whose level was last
raised by a prior service 𝜆𝜆𝜆 where ℓ𝜆𝜆′ = ℓ𝜆𝜆 − 4.

• We want to claim that if 𝑞𝑞 gathered delay to trigger 𝜆𝜆, then the costs
of 𝜆𝜆𝜆 are justified, i.e., were also incurred by the optimal solution.

• I.e., we want a doubling argument.

From charging intuition to tertiary services

• If we were in the clairvoyant case, the argument would be easier:

• 𝜆𝜆𝜆 could prioritize according to future delay.

• If 𝑞𝑞 wasn’t served but incurred delay to trigger 𝜆𝜆, this means that more urgent requests that were served by 𝜆𝜆𝜆:

1. Gathered large delay in the optimal solution, or

2. Were served by the optimal solution, incurring significant cost.

• This justifies the cost of 𝜆𝜆𝜆, allowing us to charge the cost of 𝜆𝜆 to 𝜆𝜆𝜆.

• Instead, we are in the non-clairvoyant case, and thus serve “blindly”.

• This is solved by tertiary services.

Tertiary Services

• When the service 𝜆𝜆 is triggered by dome ℓ𝜆𝜆 − 4, are there requests of distance class strictly smaller than ℓ𝜆𝜆 − 4
with positive residual delay? (That is, a request in the “upper dome”.)

1. “No” → 𝜆𝜆 is primary.

2. “Yes” → there exists such 𝑞𝑞 which is a witness for 𝜆𝜆𝜆.

2.1. If 𝜆𝜆𝜆 already triggered Θ(𝑛𝑛) tertiary services, then 𝜆𝜆 will be secondary.

2.2. Otherwise, 𝜆𝜆 will be tertiary.

• A tertiary service simply serves the witness request and returns the server to the original location.

From charging intuition to tertiary services

• The doubling now looks like this:

1. A primary/secondary service 𝜆𝜆 of level ℓ takes place, leaving “witness” requests.

2. Then, Θ 𝑛𝑛 tertiary services involve the witnesses of 𝜆𝜆.

3. A secondary service of level ℓ + 4 takes place, charged to the Θ 𝑛𝑛 tertiary services.

• Note that we are able to charge the tertiary services to OPT because of their sparse structure induced by the
previous service 𝜆𝜆.

Conclusion

• We present the first algorithm for non-clairvoyant online service with delay.

• The algorithm is deterministic, and has a competitive ratio of 𝑂𝑂 min 𝑛𝑛 log𝑛𝑛 , 𝑚𝑚 log𝑚𝑚 .

• Where 𝑛𝑛 is the number of points, and 𝑚𝑚 is the number of requests.

• This is nearly tight, matching the previously-known lower bounds of Ω(𝑛𝑛) and Ω 𝑚𝑚 .

Thank You!

	Nearly-Optimal Algorithm for Non-Clairvoyant Service with Delay
	Online Service with Delay (OSD)
	Slide Number 3
	Online Service with Deadlines
	Clairvoyance
	Previous Work
	Our Results
	The Algorithm
	Service Structure
	Delay Counters and Residual Delays
	Domes
	Services
	Primary+Secondary Services
	Primary+Secondary Services
	Primary+Secondary Services
	Charging intuition
	From charging intuition to tertiary services
	Tertiary Services
	From charging intuition to tertiary services
	Conclusion
	Thank You!

