Noisy (Binary) Searching: Simple, Fast and Correct By Dariusz Dereniowski, Aleksander Łukasiewicz and Przemysław Uznański

Aleksander Łukasiewicz, STACS 2025

The problem, the model and all that jazz...

Algorithm

Binary search as a game

Adversary

Game on a graph

Adversary

Algorithm

Searching with stochastic noise Let me flip a coin first! **Adversary**

Searching with stochastic noise

Adversary

Algorithm

Algorithm

Probabilistic errors

- For each query an erroneous reply independently with probability $p, 0 \le p < \frac{1}{2}$.
- We want correct output with probability at least 1δ .
- We want to know the exact query complexity (we care about constants).

in expectation.

Can't beat roughly

 $\frac{\log_2 n}{1 - H(p)}$

Intuition and challenges along the way

Part II

General framework - MWU

General framework - MWU

General framework - MWU

 $\times C_2$

MWU - Bayesian updates

 $\times p$

Measuring progress

Initial distribution - high entropy

Measuring progress

0		 	
U			

Goal - low entropy

Idealised scenario [Ben-Or, Hassidim, 2008]

Idealised scenario [Ben-Or, Hassidim, 2008]

Half of the mass

Half of the mass

Idealised scenario [Ben-Or, Hassidim, 2008]

q

 $\times (1-p)$

The expected entropy drop is 1 - H(p)

 $\times p$

But in CS we are living in a discrete world!

We won't be able to get a perfect bisection all the time!

It's a discrete, discrete, discrete world!

N(q, u) - set of vertices consistent with query q and response u.

N(q, u) - set of vertices consistent with query q and response u.

$\Lambda(v) = \max \, \omega(N(v, u))$ $u \in N(v)$

$$\sum_{v \in V} \omega(u) \cdot d(u, v)$$

Median of a graph: $q = \arg \min_{v \in V} \Phi(v)$

Lemma [Emamjomeh-Zadeh et al. '16]: if *q* is a median, then $\Lambda(q) \leq \frac{\omega(V)}{2}$

Our

Part III

Our results

Previous (close to optimal) results - noisy binary search

Paper	Setting	
Ben-Or, Hassidim [FOCS 2008]	Expected	
Gan et al. [SWAT 2022]	Worst-case Constant p	
Gretta, Price [ICALP 2024]	Worst-case More general prob	

Previous (close to optimal) results - noisy binary search

Paper	Setting	
Burnashev, Zigangirov [Problemy Peredachi Informatsii, 1974]	Expected Target unif. rando	
Ben-Or, Hassidim [FOCS 2008]	Expected	
Gan et al. [SWAT 2022]	Worst-case Constant p	
Gretta, Price [ICALP 2024]	Worst-case More general prob	

Previous results - noisy graph search

Paper	Setting
Emamjomeh-Zadeh et al. [STOC 2016]	Expected
Dereniowski et al. [SOSA 2019]	Worst-case

Our results

$$-O(\log \delta^{-1})) \qquad \frac{1}{1 - H(p)} (\log_2 n + O(\log \log n) + O(\log \delta^{-1}))$$

Contributions

- **Simple** query the median until its over.
- **Fast** close to optimal, slightly improving previous complexities.
- Correct we correct errors from previous literature.

Techniques

- heaviest element.

• New measure of progress (in analysis): total weight minus the weight of the

• Random choice of a query [Burnashev, Zigangirov, 1974] with tighter analysis.

Open problems

- Closing the small gap between lower and upper bounds.
- Graph (and tree) searching with permanent probabilistic noise, see [Boczkowski et al. ESA 2018].
- Improving lower order terms in noisy binary search with monotonic probabilities, see [Greta & Price, ICALP 2024].