On read-k projections of the determinant

Pavel Hrubeš¹, Pushkar S. Joglekar²

March 4, 2025

¹Institute of Mathematics of ASCR, Prague, Czechia. ²Vishwakarma Institute of Technology, Pune, India.

The permanent versus determinant problem

X – an $n \times n$ matrix with variables $x_{i,j}$ as entries.

$$\det_n(X) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)}$$
$$\operatorname{perm}_n(X) = \sum_{\sigma} \prod_{i=1}^n x_{i,\sigma(i)}.$$

The permanent versus determinant problem

X – an $n \times n$ matrix with variables $x_{i,j}$ as entries.

$$\det_n(X) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^n x_{i,\sigma(i)},$$
$$\operatorname{perm}_n(X) = \sum_{\sigma} \prod_{i=1}^n x_{i,\sigma(i)}.$$

Question. [Pólya] Is there a simple expression of permanent in terms of the determinant?

$$\operatorname{perm}_n(X) = \det_m(M),$$

where *M* is an $m \times m$ matrix with variables or scalars as entries?

$$\operatorname{perm}_n(X) = \det_m(M),$$

where *M* is an $m \times m$ matrix with variables or scalars as entries?

E.g., perm₂
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = det_3 \begin{pmatrix} x_{11} & 0 & 1 \\ x_{21} & x_{22} & 0 \\ 0 & x_{12} & 1 \end{pmatrix}$$

$$\operatorname{perm}_n(X) = \det_m(M),$$

where *M* is an $m \times m$ matrix with variables or scalars as entries?

E.g., perm₂
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = det_3 \begin{pmatrix} x_{11} & 0 & 1 \\ x_{21} & x_{22} & 0 \\ 0 & x_{12} & 1 \end{pmatrix}$$

det and perm capture different complexity classes.

$$\operatorname{perm}_n(X) = \det_m(M),$$

where *M* is an $m \times m$ matrix with variables or scalars as entries?

E.g., perm₂
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = det_3 \begin{pmatrix} x_{11} & 0 & 1 \\ x_{21} & x_{22} & 0 \\ 0 & x_{12} & 1 \end{pmatrix}$$

det and perm capture different complexity classes.

• m(n) is conjectured to be exponential in *n*.

$$\operatorname{perm}_n(X) = \det_m(M),$$

where *M* is an $m \times m$ matrix with variables or scalars as entries?

E.g., perm₂
$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = det_3 \begin{pmatrix} x_{11} & 0 & 1 \\ x_{21} & x_{22} & 0 \\ 0 & x_{12} & 1 \end{pmatrix}$$

det and perm capture different complexity classes.

- m(n) is conjectured to be exponential in *n*.
- $m(n) \ge \Omega(n^2)$ [Mignon-Ressayre].

Our question. Can we have a representation

$$\operatorname{perm}_n(X) = \operatorname{det}_m(M)\,,$$

such that every variable appears a small number of times in M?

▶ M – a square matrix with entries from $\mathbb{F} \cup X$.

- ▶ M a square matrix with entries from $\mathbb{F} \cup X$.
- *M* is a *determinantal representation* of a polynomial $f \in \mathbb{F}[X]$ if $f = \det(M)$.

- M a square matrix with entries from $\mathbb{F} \cup X$.
- *M* is a *determinantal representation* of a polynomial $f \in \mathbb{F}[X]$ if $f = \det(M)$.
- Variable size of M := the number of entries containing a variable.

- M a square matrix with entries from $\mathbb{F} \cup X$.
- *M* is a *determinantal representation* of a polynomial $f \in \mathbb{F}[X]$ if $f = \det(M)$.
- Variable size of M := the number of entries containing a variable.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

- M a square matrix with entries from $\mathbb{F} \cup X$.
- *M* is a *determinantal representation* of a polynomial $f \in \mathbb{F}[X]$ if $f = \det(M)$.
- Variable size of M := the number of entries containing a variable.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

Hence, some variable must appear at least Ω(√n/log n) times in M.

- M a square matrix with entries from $\mathbb{F} \cup X$.
- *M* is a *determinantal representation* of a polynomial $f \in \mathbb{F}[X]$ if $f = \det(M)$.
- Variable size of M := the number of entries containing a variable.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

- Hence, some variable must appear at least $\Omega(\sqrt{n}/\log n)$ times in *M*.
- We also present an explicit *n*-variate multilinear polynomial for which the same bound on determinantal representation holds.

Given a polynomial f, is it easier to express f as perm(M) than det(M)?

Proposition

Proposition

1. There exists a multilinear polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ such that every M with

 $f = \det(M)$

requires variable size $\Omega(2^{n/2})$.

Proposition

1. There exists a multilinear polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ such that every M with

 $f = \det(M)$

requires variable size $\Omega(2^{n/2})$.

2. If $char(\mathbb{F}) \neq 2$ then every multilinear $f \in \mathbb{F}[x_1, \dots, x_n]$ can be expressed as

$$f = \operatorname{perm}(M)$$

where *M* is an $m \times m$ matrix with $m \le O(2^n)$ and each variable x_i appears in *M* exactly once.

Proposition

1. There exists a multilinear polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ such that every M with

 $f = \det(M)$

requires variable size $\Omega(2^{n/2})$.

2. If $char(\mathbb{F}) \neq 2$ then every multilinear $f \in \mathbb{F}[x_1, \dots, x_n]$ can be expressed as

$$f = \operatorname{perm}(M)$$

where M is an $m \times m$ matrix with $m \le O(2^n)$ and each variable x_i appears in M exactly once. Moreover, every row and column of M contains at most one variable.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

Suppose
$$perm_n(X) = \det_m(M)$$
.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

Suppose
$$perm_n(X) = \det_m(M)$$
.

► Set *k* ~ log *n*.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

- Suppose $perm_n(X) = \det_m(M)$.
- Set $k \sim \log n$. Every multilinear $f \in \mathbb{F}[x_{11}, \ldots, x_{kk}]$ can be written as

 $f = \operatorname{perm}_n(X_f)$

where X_f is obtained by setting variables *outside* of $\{x_{11}, \ldots, x_{kk}\}$ to constants in *X*.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

- Suppose $perm_n(X) = \det_m(M)$.
- Set $k \sim \log n$. Every multilinear $f \in \mathbb{F}[x_{11}, \ldots, x_{kk}]$ can be written as

 $f = \operatorname{perm}_n(X_f)$

where X_f is obtained by setting variables *outside* of $\{x_{11}, \ldots, x_{kk}\}$ to constants in *X*.

But some such *f* requires determinantal representation of variable size Ω(2^{k/2}) ⇒ the variables x₁₁,..., x_{kk} must appear in *M* at least Ω(2^{k/2}) times.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

- Suppose $perm_n(X) = \det_m(M)$.
- Set $k \sim \log n$. Every multilinear $f \in \mathbb{F}[x_{11}, \ldots, x_{kk}]$ can be written as

 $f = \operatorname{perm}_n(X_f)$

where X_f is obtained by setting variables *outside* of $\{x_{11}, \ldots, x_{kk}\}$ to constants in *X*.

But some such *f* requires determinantal representation of variable size Ω(2^{k/2}) ⇒ the variables x₁₁,..., x_{kk} must appear in *M* at least Ω(2^{k/2}) times.

If char(\mathbb{F}) \neq 2, every determinantal representation of perm_n requires variable size $\Omega(n^{5/2}/\log n)$.

- Suppose $perm_n(X) = \det_m(M)$.
- Set $k \sim \log n$. Every multilinear $f \in \mathbb{F}[x_{11}, \ldots, x_{kk}]$ can be written as

 $f = \operatorname{perm}_n(X_f)$

where X_f is obtained by setting variables *outside* of $\{x_{11}, \ldots, x_{kk}\}$ to constants in *X*.

- But some such *f* requires determinantal representation of variable size Ω(2^{k/2}) ⇒ the variables x₁₁,..., x_{kk} must appear in *M* at least Ω(2^{k/2}) times.
- The same applies to any subset of X not sharing a row or column $\implies M$ contains $\Omega(\frac{n^2}{k}2^{k/2})$ variables.

Thank you