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Tarski arithmetic + Exponentiation

Tarski arithmetic: First Order theory of (R; +, ·,≤).

R(ex): extension of Tarski arithmetic with x 7→ ex .

Several applications:

• Entropic risk threshold problem for stochastic games
• Containment problem for probabilistic automata
• Reachability problem for Linear Time-Invariant systems
• Verification of Deep Neural Networks
• Deciding accuracy of Differential Privacy Schemes ...

Theorem (Macintyre and Wilkie, 1996)
R(ex) is decidable subject to Schanuel’s Conjecture.
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Goal of our work:

Study variations of R(ex) that are unconditionally decidable
and can be used for some known applications.
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Goal of our work:

Study variations of R(ex) that are unconditionally decidable
and can be used for some known applications.

Corollary of our work:

The entropic risk threshold problem for turn-based stochastic games
[Baier et al. MFCS 2023] is unconditionally decidable.



Our work

We study the existential theory of (R; b,+, ·, bZ(x),≤) denoted ∃R(bZ).

Where:
• b > 0 is a fixed computable real number.
• bZ(x) is a unary predicate, true for integer powers of b.

Theorem
Fix a real number b > 0. The satisfiability problem ∃R(bZ) is

1 in EXPSPACE whenever b is an algebraic number α.
2 in 3EXPTIME if b ∈ {π, eπ, eα, αβ, ln(α), ln(α)ln(β) : α, β algebraic}.
3 decidable whenever b is a computable transcendental number.

(
We now also know that ∃R(bZ) is in EXPTIME for b ∈ Q

)

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 2 / 9

1
b2

1
b

1 b b2 b3



Our work

We study the existential theory of (R; b,+, ·, bZ(x),≤) denoted ∃R(bZ).

Where:
• b > 0 is a fixed computable real number.
• bZ(x) is a unary predicate, true for integer powers of b.

Theorem
Fix a real number b > 0. The satisfiability problem ∃R(bZ) is

1 in EXPSPACE whenever b is an algebraic number α.
2 in 3EXPTIME if b ∈ {π, eπ, eα, αβ, ln(α), ln(α)ln(β) : α, β algebraic}.
3 decidable whenever b is a computable transcendental number.

(
We now also know that ∃R(bZ) is in EXPTIME for b ∈ Q

)
Jorge Gallego Hernández Existential theory of Reals with Integer Powers 2 / 9



Our work

We study the existential theory of (R; b,+, ·, bZ(x),≤) denoted ∃R(bZ).

Where:
• b > 0 is a fixed computable real number.
• bZ(x) is a unary predicate, true for integer powers of b.

Theorem
Fix a real number b > 0. The satisfiability problem ∃R(bZ) is

1 in EXPSPACE whenever b is an algebraic number α.
2 in 3EXPTIME if b ∈ {π, eπ, eα, αβ, ln(α), ln(α)ln(β) : α, β algebraic}.
3 decidable whenever b is a computable transcendental number.

(
We now also know that ∃R(bZ) is in EXPTIME for b ∈ Q

)
Jorge Gallego Hernández Existential theory of Reals with Integer Powers 2 / 9



Our work

We study the existential theory of (R; b,+, ·, bZ(x),≤) denoted ∃R(bZ).

Where:
• b > 0 is a fixed computable real number.
• bZ(x) is a unary predicate, true for integer powers of b.

Theorem
Fix a real number b > 0. The satisfiability problem ∃R(bZ) is

1 in EXPSPACE whenever b is an algebraic number α.
2 in 3EXPTIME if b ∈ {π, eπ, eα, αβ, ln(α), ln(α)ln(β) : α, β algebraic}.
3 decidable whenever b is a computable transcendental number.

(
We now also know that ∃R(bZ) is in EXPTIME for b ∈ Q

)
Jorge Gallego Hernández Existential theory of Reals with Integer Powers 2 / 9

WARNING! This theorem needs:
• In 1 and 2 , representations of α, β (polynomials having

these numbers as roots and isolating intervals).

• In 3 a Turing Machine that computes b.
(For n in unary, the TM returns xn s.t. |b − xn| ≤ 2−n)



The theory ∃R(bZ)

Grammar:

φ,ψ := P(b, x) ∼ 0 | bZ(x) | ⊤ | ⊥ | φ ∨ ψ | φ ∧ ψ | ∃x φ

Where P(b, x) are integer polynomials and ∼ belongs to {<,=}.

Examples:

• ∃x : x2 − 5 = 0 ∧ bZ(x)

• ∃x∃y : bZ(x) ∧ x ≤ y3 < b2x

Notation:

• deg(P): degree of P .

• h(P): maximum coeff. of P in absolute value (height).
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Related work

1986 Van den Dries: FO R(2Z) is decidable. [Manuscripta Math.]

2007 Avigad and Yin: FO R(2Z) is in TOWER. [Theor. Comput. Sci.]

2010 Hieronymi: FO R(2Z, 3Z) is undecidable. [Proc. Am. Math. Soc.]

2012 Achatz et al.: ∃x∃y : y = ex ∧ φ(x , y) decidable. [J. Symb. Comp.]

Takeaways from previous work:

• Algebraic numbers allow to establish complexity results.

• Transcendental numbers are difficult to handle complexity-wise.
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A way to avoid Schanuel’s Conjecture: Root barriers

Problem: For x computable, checking the sign of P(x) is undecidable.

Intuition: Any approximation xn could yield P(xn) ̸= 0 while P(x) = 0.

Solution: Suppose to know a number t s.t. either P(x) = 0 or |P(x)| > t.
Then the problem becomes decidable.

Definition (Root barrier)

A function σ : (N≥1)
2 → N is a root barrier of b ∈ R if for every integer

polynomial P(x), either P(b) = 0 or |P(b)| ≥ 1

2σ(deg(P),h(P))
.

Focus on numbers that have a polynomial root barrier:

σ(d , h) = c · (d + ⌈log h⌉)k c, k ∈ N
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(degree of the
root barrier)



A general theorem

Theorem
Let b > 0 a ptime computable real number with a root barrier of degree k .

1 If k = 1, the satisfiability problem ∃R(bZ) is in 2EXPTIME.
2 If k > 1, the satisfiability problem ∃R(bZ) is in 3EXPTIME.

Finding k is difficult in general.

• Algebraic numbers have always k = 1.
(2EXPTIME can be improved to EXPSPACE with small tricks.)

• π, e, logα . . . all have k > 1.
(See work of Waldschmidt on transcendence measures.)
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Procedure overview

Fixed: b > 1 computable number with a polynomial root barrier.
Input: φ(x1, . . . , xn), quantifier-free formula from ∃R(bZ).
Output: True if φ is satisfiable, and False otherwise.

1 Guess which variables equal 0 and replace.

2 Replace each xi with a factorization ui · vi

3 Eliminate all the vi with a quantifier elimination procedure for Tarski
arithmetic (use, e.g. [Basu, Pollack and Roy, 1996]).

4 Guess a small exponent gi ∈ Z for all ui (Small witness property)

5 Check if (u1 = bg1 , . . . , un = bgn) is a solution to ψ
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bZ(ui )

1 ≤ |vi | < b

Remark
At this point we obtained ψ(u1, . . . , un), an equisatisfiable formula to φ
where all the variables range over bZ.
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Small witness property

Proposition (Small Witness Property)
Fix b > 1 having a root barrier of degree k .
If a quantifier free formula ψ(u1, . . . , un) over bZ has a solution
then it has one assigning to each variable a number b g ∈ bZ where

|g | ≤ (2c log(h(ψ)))deg(ψ)
O(n2)kdeg(ψ)O(n)

Theorem
Let b > 0 a ptime computable real number with a root barrier of degree k .

1 If k = 1, the satisfiability problem ∃R(bZ) is in 2EXPTIME.
2 If k > 1, the satisfiability problem ∃R(bZ) is in 3EXPTIME.

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 8 / 9



Small witness property

Proposition (Small Witness Property)
Fix b > 1 having a root barrier of degree k .
If a quantifier free formula ψ(u1, . . . , un) over bZ has a solution
then it has one assigning to each variable a number b g ∈ bZ where

|g | ≤ (2c log(h(ψ)))deg(ψ)
O(n2)kdeg(ψ)O(n)

Theorem
Let b > 0 a ptime computable real number with a root barrier of degree k .

1 If k = 1, the satisfiability problem ∃R(bZ) is in 2EXPTIME.
2 If k > 1, the satisfiability problem ∃R(bZ) is in 3EXPTIME.

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 8 / 9



Small witness property

Proposition (Small Witness Property)
Fix b > 1 having a root barrier of degree k .
If a quantifier free formula ψ(u1, . . . , un) over bZ has a solution
then it has one assigning to each variable a number b g ∈ bZ where

|g | ≤ (2c log(h(ψ)))deg(ψ)
O(n2)kdeg(ψ)O(n)

Theorem
Let b > 0 a ptime computable real number with a root barrier of degree k .

1 If k = 1, the satisfiability problem ∃R(bZ) is in 2EXPTIME.
2 If k > 1, the satisfiability problem ∃R(bZ) is in 3EXPTIME.

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 8 / 9



Small witness property

Proposition (Small Witness Property)
Fix b > 1 having a root barrier of degree k .
If a quantifier free formula ψ(u1, . . . , un) over bZ has a solution
then it has one assigning to each variable a number b g ∈ bZ where

|g | ≤ (2c log(h(ψ)))deg(ψ)
O(n2)kdeg(ψ)O(n)

Theorem
Let b > 0 a ptime computable real number with a root barrier of degree k .

1 If k = 1, the satisfiability problem ∃R(bZ) is in 2EXPTIME.
2 If k > 1, the satisfiability problem ∃R(bZ) is in 3EXPTIME.

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 8 / 9

Done by removing u1, . . . , un, one by one but with a twist.

elimination of u1 elimination of z1 elimination of z3


u1 = bk1 · zℓ11 · zℓ22

u2 = z j11 · br1

u3 = z j12 · br2

{
z1 = bk2 · zℓ33

z2 = z j23 · br3
{
z3 = bk3



Conclusion

We studied the complexity of ∃R(bZ):

• ∃R(bZ) ∈ EXPSPACE for b algebraic.

• ∃R(bZ) ∈ 3EXPTIME for b among e, π and others.

• Fundamental notion: polynomial root barriers.

• Application: Entropic risk threshold problem for stochastic games
is unconditionally decidable.

Future work:

• How far are we from the exact complexity of these theories?

• Is ∃R(aZ, bZ) decidable for some a, b ∈ R with aZ ∩ bZ = {1}?

• Can we remove appeals to Schanuel’s conjecture in other applications?
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Thank you for
your time



APPENDIX
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Small witness property: Finding the substitutions

Fix u2, . . . , un. Over R, solutions of ψ(u1) form a finite set of intervals.

1
b2

1
b

1 b b2 b3

q(r) = 0

λ(r) r

p(r) = 0

b · λ(r)r

If an interval contains an element of bZ, then it contains one close to a
root r . Hence, we can restrict to u1 ∈ {b−1 · λ(r), λ(r), b · λ(r)}.
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Small witness property: Key substitutions

We can obtain a finite disjunction equivalent to ∃u1 ψ∨
∃u1 :

(
u j
1 = bm · uℓ

)
∧ ψ where uℓ := uℓ22 · · · · · uℓnn

We would like to perform the substitution right away with

u1 =
j

√
bm · uℓ22 · · · · · uℓnn but we have to be careful!

Consider:

u5
1 = b2 · u2 =⇒ u2 = bk ∧ 5|k + 2 for some k ∈ Z

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 4 / 7



Small witness property: Key substitutions

We can obtain a finite disjunction equivalent to ∃u1 ψ∨
∃u1 :

(
u j
1 = bm · uℓ

)
∧ ψ where uℓ := uℓ22 · · · · · uℓnn

We would like to perform the substitution right away with

u1 =
j

√
bm · uℓ22 · · · · · uℓnn but we have to be careful!

Consider:

u5
1 = b2 · u2 =⇒ u2 = bk ∧ 5|k + 2 for some k ∈ Z

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 4 / 7

Remember that u ∈ {u2, . . . , un} are integer powers of b,

uℓ = bℓ·(q·j+r) = z j ·br ·ℓ for q ∈ Z, r ∈ [0..j−1], z ∈ bZ

Hence, m +
∑n

i=2 ri · ℓi has to be divisible by j .



Small witness property: Finding the substitutions

We write λ : R>0 → bZ for the function mapping a ∈ R to the largest
integer power of b that is less or equal than a.

1
b2

1
b

1 b b2 b3

a1λ(a1)a2λ(a2) a3 = λ(a3)
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Sign evaluation

5 Check if (u1 = b g1 , . . . , un = b gn) is a solution to ψ

ψ(b g1 , . . . , b gn) is a Boolean combination of Pi (b) ∼ 0. For each
inequality, test |P(Tn)| ≤ 2−m. Where T is the TM for b, and n and m are
obtained via the root barrier.

Finally return true or false depending on the Boolean structure of ψ.

Jorge Gallego Hernández Existential theory of Reals with Integer Powers 6 / 7



Small witness property: Finding the substitutions

Claim 1
Let r ∈ R be a root of a polynomial P . Then, there is a finite
characterisation:

λ(r) j = bs
λ(Q(b,u))
λ(R(b,u))

j , s ∈ Z

With polynomials Q and R computed from P .

Claim 2
The value of λ(Q(b,u)) is "close" to some monomial uℓ ocurring in Q:

λ(Q(b,u)) = btuℓ t ∈ Z

[Claim 1] + [Claim 2] +
[
u1 ∈ {b−1λ(r), λ(r), bλ(r)}

] → u j
1 = bmuℓ
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