
(STACS 2025)

Marcin Bieńkowski
University of Wrocław

Online Disjoint Set Covers
(Randomization is Not Necessary)

Jarek Byrka
University of Wrocław

Łukasz Jeż
University of Wrocław

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Online Disjoint Set Covers

2

❖ n elements
❖ Sequence of sets (appear online), each has to be colored
❖ Set S colored with color x all nodes from S collect color x
❖ Gain = numbers of “valid” colors = colors collected by all nodes

⟹

1 2 3 4

2

1 3

4

Competitive ratio

3

1 2 3 4

Competitive ratio

3

1 2 3 4

ALG(I) = 1

Competitive ratio

3

1 2 3 4 1 2 3 4

ALG(I) = 1 OPT(I) = 2

Competitive ratio

3

1 2 3 4 1 2 3 4

ALG(I) = 1 OPT(I) = 2

Competitive ratio = OPT(I) / ALG(I) = 2

OPT min-degree≤

4

❖ Gain of OPT = colors collected by all
nodes in OPT’s solution

❖ Gain of OPT min-degree
❖ We will compare ALG to min-degree

instead of OPT

≤

1 2 3 4

Results

5

Lower bound Upper bound

randomized
algorithms

O(log n / log log n) [1] O(log2 n) [1]

deterministic
algorithms O(log n / log log n) [1]

O(n) [1]

[1] Emek, Goldbraikh, Kantor ’19

Results

5

Lower bound Upper bound

randomized
algorithms

O(log n / log log n) [1] O(log2 n) [1]

deterministic
algorithms O(log n / log log n) [1]

O(n) [1]

O(log2 n)

[1] Emek, Goldbraikh, Kantor ’19 Our result

Results

5

Lower bound Upper bound

randomized
algorithms

O(log n / log log n) [1] O(log2 n) [1]

deterministic
algorithms O(log n / log log n) [1]

O(n) [1]

O(log2 n)

[1] Emek, Goldbraikh, Kantor ’19 Our result

Offline case: O(log n)-apx exists, not possible to improve it unless NP ⊆ DTIME(nlog log n)

The Plan

❖ Problem definition ✅
❖ Previous results ✅
❖ Min-degree known a priori

✦ ➜ randomized O(log n)-competitive solution

✦ ➜ deterministic O(log n)-competitive solution

❖ Challenges for unknown min-degree

6

The Plan

❖ Problem definition ✅
❖ Previous results ✅
❖ Min-degree known a priori

✦ ➜ randomized O(log n)-competitive solution

✦ ➜ deterministic O(log n)-competitive solution

❖ Challenges for unknown min-degree

6

Our framework, but for an
already known result

Known min-degree δ

7

Randomized algorithm
❖ Fix color palette P = {1, 2, …, Θ(δ/log n)}
❖ For each set: choose color u.a.r. from P

Analysis
❖ Each node gets all colors from P w.h.p.
❖ This holds for all nodes w.h.p.
❖ ALG = |P| = Θ(δ/log n) OPT / log n≥

1 2 3 4

[Pananjady, Bagaria, Vaze ’15]

The Plan

❖ Problem definition ✅
❖ Previous results ✅
❖ Min-degree known a priori

✦ ➜ randomized O(log n)-competitive solution ✅

✦ ➜ deterministic O(log n)-competitive solution

❖ Challenges for unknown min-degree

8

Our framework, but for an
already known result

Known min-degree δ

9

Deterministic algorithm
❖ Fix color palette P = {1, 2, …, Θ(δ/log n)}
❖ For each set: choose color u.a.r. from P (in a smart way)

Node performance

10

❖ How well is node i performing?
❖ deg(i) = number of steps when node i collected colors
❖ c(i) = #colors node i collected so far

❖
 Z(i) ≜ deg(i) − 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

Node performance

10

❖ How well is node i performing?
❖ deg(i) = number of steps when node i collected colors
❖ c(i) = #colors node i collected so far

❖
 Z(i) ≜ deg(i) − 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

expected number of steps to gain c(i) colors

if colors are chosen u.a.r from P

Node performance

10

❖ How well is node i performing?
❖ deg(i) = number of steps when node i collected colors
❖ c(i) = #colors node i collected so far

❖
 Z(i) ≜ deg(i) − 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

expected number of steps to gain c(i) colors

if colors are chosen u.a.r from P

Think:
❖ high Z(i) = bad performance of node i
❖ goal: keep all Z(i) small

Node performance

10

❖ How well is node i performing?
❖ deg(i) = number of steps when node i collected colors
❖ c(i) = #colors node i collected so far

❖
 Z(i) ≜ deg(i) − 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

❖ Initially, Z(i) = 0

expected number of steps to gain c(i) colors

if colors are chosen u.a.r from P

Think:
❖ high Z(i) = bad performance of node i
❖ goal: keep all Z(i) small

How Z(i) changes if colors are chosen randomly?

11

 Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

1 2 3 4

S:

How Z(i) changes if colors are chosen randomly?

11

Case 1. i S

❖ ∆deg(i) = 0, ∆c(i) = 0 ∆Z(i) = 0

Case 2. i S
❖ ∆deg(i) = 1

❖

❖ E[∆Z(i)] = 1 - 2 · 1 = -1 < 0

∉

⟹

∈

Δc(i) = {1 with probability |P | − c(i)
|P |

0 otherwise Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

1 2 3 4

S:

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0

12

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

12

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

12

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

12

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a deterministic choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

12

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a deterministic choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

❖ But it does not imply small values of Z(i)’s for all nodes!
❖ Dead end?

12

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a deterministic choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

❖ But it does not imply small values of Z(i)’s for all nodes!
❖ Dead end?

12

Recall the goal: keep all Z(i) small

Trick: replace Z(i) by exp(Z(i) / |P|)

Alon, Awerbuch, Azar, Buchbinder, Naor ‘03

Choosing a color for set S: Applying probabilistic method (2)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a det. choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

13

Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (2)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a det. choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

13

exp (Z(i) / |P |) = 1
Recall the goal: keep all Z(i) small

Choosing a color for set S: Applying probabilistic method (2)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a det. choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

13

✦ each decreases in expectationexp (Z(i) / |P |)

exp (Z(i) / |P |) = 1
Recall the goal: keep all Z(i) small

Reverse Jensen’s type inequality

Choosing a color for set S: Applying probabilistic method (2)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a det. choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

13

✦ each decreases in expectationexp (Z(i) / |P |)

exp (Z(i) / |P |) = 1

∑n
i=1 exp (Z(i) / |P |)

Recall the goal: keep all Z(i) small

Reverse Jensen’s type inequality

Choosing a color for set S: Applying probabilistic method (2)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a det. choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

13

✦ each decreases in expectationexp (Z(i) / |P |)

exp (Z(i) / |P |) = 1

∑n
i=1 exp (Z(i) / |P |)

∑n
i=1 exp (Z(i) / |P |)

Recall the goal: keep all Z(i) small

Reverse Jensen’s type inequality

This is our algorithm!

Choosing a color for set S: Applying probabilistic method (2)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦ decreases in expectation∑n
i=1 Z(i)

❖ There exists a det. choice of color for S, s.t. decreases. ∑n
i=1 Z(i)

❖ for each i⟹ ∑n
i=1 exp (Z(i) / |P |) ≤ n ⟹ Z(i) ≤ |P | ⋅ ln n

13

✦ each decreases in expectationexp (Z(i) / |P |)

exp (Z(i) / |P |) = 1

∑n
i=1 exp (Z(i) / |P |)

∑n
i=1 exp (Z(i) / |P |)

Recall the goal: keep all Z(i) small

Reverse Jensen’s type inequality

Guarantees of the algorithm

❖ For any node i, it always holds Z(i) ≤ |P | ⋅ ln n

14

 Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

Guarantees of the algorithm

❖ For any node i, it always holds Z(i) ≤ |P | ⋅ ln n

❖ Suppose for a contradiction that at the end of the execution c(i) < |P |

14

 Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

Guarantees of the algorithm

❖ For any node i, it always holds Z(i) ≤ |P | ⋅ ln n

❖ Suppose for a contradiction that at the end of the execution c(i) < |P |

❖
Then, = δ, a contradiction.deg(i) ≤ |P | ⋅ ln n + 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

< const ⋅ |P | ⋅ ln n

14

 Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

Guarantees of the algorithm

❖ For any node i, it always holds Z(i) ≤ |P | ⋅ ln n

❖ Suppose for a contradiction that at the end of the execution c(i) < |P |

❖
Then, = δ, a contradiction.deg(i) ≤ |P | ⋅ ln n + 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

< const ⋅ |P | ⋅ ln n

14

 Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

Actually (ln n + ln |P|), but a modification
of the algorithm can fix it

The Plan

❖ Problem definition ✅
❖ Previous results ✅
❖ Min-degree known a priori

✦ ➜ randomized O(log n)-competitive solution ✅

✦ ➜ deterministic O(log n)-competitive solution ✅

❖ Challenges for unknown min-degree

15

Problems with Unknown Min-degree

The presented technique requires the knowledge of min-degree:
❖ for choosing palette
❖ for down-scaling of Z(i) for exp-function ←⃪ this is not a mere technicality!

Our approach:
❖ Each node has its own phase p (new phase when its degree doubles)
❖ Main obstacle: this results in infinitely many variables Z(i, p)
❖ We show that we can control weighted averages of Z(i, p)

16

Outlook

17

Lower bound Upper bound

randomized O(log n / log log n) [1] O(log2 n) [1]

deterministic O(log n / log log n) [1] O(log2 n)

Open questions:
❖ Close the (randomized and deterministic) gaps
❖ What features of an online problem make randomization unnecessary?

Thank you!

