Online Disjoint Set Covers (Randomization is Not Necessary)

Marcin Bieńkowski

University of Wrocław

Jarek Byrka University of Wrocław

Łukasz Jeż University of Wrocław

(STACS 2025)

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- * Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- * Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- * Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- * Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- * Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

- * *n* elements
- Sequence of sets (appear online), each has to be colored
- * Set S colored with color $x \Longrightarrow$ all nodes from S *collect color* x
- Gain = numbers of "valid" colors = colors collected by all nodes

3

ALG(I) = 1

3

ALG(I) = 1

OPT(I) = 2

ALG(I) = 1

Competitive ratio = OPT(I) / ALG(I) = 2

OPT(I) = 2

$OPT \leq min-degree$

- Gain of OPT = colors collected by all nodes in OPT's solution
- ♦ Gain of OPT \leq min-degree
- We will compare ALG to min-degree instead of OPT

Results

	Lower bound	Upper bound
randomized algorithms	$O(\log n / \log \log n)$ [1]	O(log ² n) [1]
deterministic algorithms	O(log n / log log n) ^[1]	O(n) [1]

[1] Emek, Goldbraikh, Kantor '19

Results

	Lower bour
randomized algorithms	O(log <i>n</i> / log log
deterministic algorithms	O(log n / log log

[1] Emek, Goldbraikh, Kantor '19

Results

	Lower bour
randomized algorithms	O(log <i>n</i> / log log
deterministic algorithms	O(log <i>n</i> / log log

[1] Emek, Goldbraikh, Kantor '19

Offline case: $O(\log n)$ -apx exists, not possible to improve it unless NP \subseteq DTIME($n^{\log \log n}$)

The Plan

- Problem definition
- Previous results
- Min-degree known a priori
 - → randomized O(log n)-competitive solution
 - + \rightarrow deterministic O(log *n*)-competitive solution
- Challenges for unknown min-degree

The Plan

- Problem definition
- Previous results
- Min-degree known a priori
 - → randomized O(log n)-competitive solution
 - deterministic O(log n)-competitive solution
- Challenges for unknown min-degree

Our framework, but for an already known result

Known min-degree δ

Randomized algorithm [Pananjady, Bagaria, Vaze '15]

- * Fix color palette $P = \{1, 2, ..., \Theta(\delta / \log n)\}$
- For each set: choose color u.a.r. from P

Analysis

- Each node gets all colors from P w.h.p.
- This holds for all nodes w.h.p.
- ♦ ALG = |P| = Θ(δ/log n) ≥ OPT / log n

The Plan

- Problem definition
- Previous results
- Min-degree known a priori
 - ← \rightarrow randomized O(log *n*)-competitive solution
 - deterministic O(log n)-competitive solution
- Challenges for unknown min-degree

Our framework, but for an already known result

Known min-degree δ

Deterministic algorithm

- * Fix color palette $P = \{1, 2, ..., \Theta(\delta / \log n)\}$
- For each set: choose color u.a.r. from P (in a smart way)

- * How well is node i performing?
- deg(i) = number of steps when node i collected colors
- c(i) = # colors node *i* collected so far

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

- * How well is node i performing?
- * deg(i) = number of steps when node *i* collected colors
- * c(i) = # colors node *i* collected so far

expected number of steps to gain c(*i*) colors if colors are chosen u.a.r from *P*

- * How well is node i performing?
- * deg(i) = number of steps when node *i* collected colors
- * c(i) = # colors node *i* collected so far

expected number of steps to gain c(*i*) colors

if colors are chosen u.a.r from *P*

Think:

* high Z(i) = bad performance of node i * goal: keep all Z(i) small

- * How well is node i performing?
- deg(i) = number of steps when node i collected colors
- * c(i) = # colors node *i* collected so far

$$Z(i) \triangleq \deg(i) - 2 \cdot \left(\sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}\right)$$

• Initially, Z(i) = 0

expected number of steps to gain c(*i*) colors

if colors are chosen u.a.r from *P*

Think:

* high *Z*(*i*) = bad performance of node *i* * goal: keep all Z(i) small

How Z(i) changes if colors are chosen randomly?

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

How *Z*(i) changes if colors are chosen randomly?

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

Case 1. i $\notin S$ ♦ $\Delta \operatorname{deg}(i) = 0, \Delta c(i) = 0 \Longrightarrow \Delta Z(i) = 0$ Case 2. $i \in S$ • $\Delta \operatorname{deg}(i) = 1$ $\Delta c(i) = \begin{cases} 1 & \text{with probability} \frac{|P| - c(i)}{|P|} \\ 0 & \text{otherwise} \end{cases}$ ◆ $E[\Delta Z(i)] = 1 - 2 \cdot 1 = -1 < 0$

• Initially, Z(i) = 0

- Initially, Z(i) = 0
- If we choose color for S randomly, then:

• Initially, Z(i) = 0

- * If we choose color for *S* randomly, then:
 - each Z(i) decreases in expectation

• Initially, Z(i) = 0

- * If we choose color for *S* randomly, then:
 - each Z(i) decreases in expectation
 - $\sum_{i=1}^{n} Z(i)$ decreases in expectation

• Initially, Z(i) = 0

- * If we choose color for *S* randomly, then:
 - each Z(i) decreases in expectation
 - + $\sum_{i=1}^{n} Z(i)$ decreases in expectation
- There *exists a deterministic* choice of color for *S*, s.t. $\sum_{i=1}^{n} Z(i)$ decreases.

• Initially, Z(i) = 0

- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - + $\sum_{i=1}^{n} Z(i)$ decreases in expectation
- There *exists a deterministic* choice of color for *S*, s.t. $\sum_{i=1}^{n} Z(i)$ decreases.
- But it does not imply small values of Z(i)'s for all nodes!
- * Dead end?

• Initially, Z(i) = 0

- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - + $\sum_{i=1}^{n} Z(i)$ decreases in expectation
- There *exists a deterministic* choice of color for *S*, s.t. $\sum_{i=1}^{n} Z(i)$ decreases.
- But it does not imply small values of Z(i)'s for all nodes!
- * Dead end?

Recall the goal: keep all Z(i) small

Trick: replace Z(i) by exp(Z(i) | P|)

Alon, Awerbuch, Azar, Buchbinder, Naor '03

- Initially, Z(i) = 0
- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - + $\sum_{i=1}^{n} Z(i)$ decreases in
- There exists a det. choice of color for S, s

Recall the goal: keep all Z(i) small

decreases in expectation

s.t.
$$\sum_{i=1}^{n} Z(i)$$

- * Initially, $Z(i) < 1 \exp(Z(i) / |P|) = 1$
- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - + $\sum_{i=1}^{n} Z(i)$ decreases in
- There exists a det. choice of color for S, s

Recall the goal: keep all Z(i) small

decreases in expectation

s.t.
$$\sum_{i=1}^{n} Z(i)$$

- * Initially, Z(i) < 1 exp(Z(i) / |P|) = 1
- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - each exp (Z(i) / |P|) decreases *in expectation*
 - + $\sum_{i=1}^{n} Z(i)$
- There exists a det. choice of color for S, s

Reverse Jensen's type inequality

decreases in expectation

s.t.
$$\sum_{i=1}^{n} Z(i)$$

- * Initially, Z(i) < 1 exp(Z(i) / |P|) = 1
- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - each exp (Z(i) / |P|) decreases *in expectation*
 - + $\sum_{i=1}^{n} \overline{Z(i)} \quad \sum_{i=1}^{n} \exp(Z(i) / |P|)$ decreases in expectation
- There exists a det. choice of color for S, s

Reverse Jensen's type inequality

s.t.
$$\sum_{i=1}^{n} Z(i)$$

- * Initially, $Z(i) = 1 \exp(Z(i) / |P|) = 1$
- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - each exp (Z(i) / |P|) decreases *in expectation*
 - + $\sum_{i=1}^{n} \overline{Z(i)} \quad \sum_{i=1}^{n} \exp(Z(i) / |P|)$ decreases in expectation

This is our algorithm!

- * Initially, $Z(i) = 1 \exp(Z(i) / |P|) = 1$
- If we choose color for S randomly, then:
 - each Z(i) decreases in expectation
 - each exp (Z(i) / |P|) decreases *in expectation*
 - + $\sum_{i=1}^{n} \overline{Z(i)} \quad \sum_{i=1}^{n} \exp(Z(i) / |P|)$ decreases in expectation
- $\Rightarrow \implies \sum_{i=1}^{n} \exp\left(Z(i) / |P|\right) \le n \implies Z(i) \le |P| \cdot \ln n \text{ for each } i$

◆ For any node *i*, it always holds $Z(i) \le |P| \cdot \ln n$

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

- ◆ For any node *i*, it always holds $Z(i) \le |P| \cdot \ln n$
- Suppose for a contradiction that at the end of the execution c(i) < |P|

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

- * For any node *i*, it always holds $Z(i) \leq |P| \cdot \ln n$
- * Suppose for a contradiction that at the end of the execution c(i) < |P|Then, deg(i) ≤ |P| · ln n + 2 · ∑_{j=1}^{c(i)} |P| / |P| - j + 1 < const · |P| · ln n = δ, a contradiction.</p>

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

- * For any node *i*, it always holds $Z(i) \leq |P| \cdot \ln n$
- Suppose for a contradiction that at the end of the execution c(i) < |P|Then, deg(i) ≤ |P| · ln n + 2 · ∑_{j=1}^{c(i)} |P| / |P| - j + 1
 K const · |P| · ln n = δ, a contradiction.

$$Z(i) \triangleq \deg(i) - 2 \cdot \sum_{j=1}^{c(i)} \frac{|P|}{|P| - j + 1}$$

Actually (ln n + ln | P |), but a modification of the algorithm can fix it

The Plan

- Problem definition
- Previous results
- Min-degree known a priori

 - + \rightarrow deterministic O(log *n*)-competitive solution \checkmark
- Challenges for unknown min-degree

Problems with Unknown Min-degree

The presented technique requires the knowledge of min-degree:

- for choosing palette
- * for down-scaling of Z(i) for exp-function \leftarrow this is not a mere technicality!

Our approach:

- Each node has its own phase p (new phase when its degree doubles)
- * Main obstacle: this results in infinitely many variables Z(*i*, *p*)
- * We show that we can control **weighted averages** of *Z*(*i*, *p*)

Outlook

	Lower bound	Upper bound
randomized	$O(\log n / \log \log n)$ [1]	O(log ² n) ^[1]
deterministic	$O(\log n / \log \log n)$ [1]	O(log ² <i>n</i>)

Open questions:

- Close the (randomized and deterministic) gaps
- What features of an online problem make randomization unnecessary?

