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1 2 3 4 1 2 3 4

ALG(I) = 1 OPT(I) = 2

Competitive ratio = OPT(I) / ALG(I) = 2



OPT  min-degree≤

4

❖ Gain of OPT = colors collected by all  
nodes in OPT’s solution

❖ Gain of OPT  min-degree 
❖ We will compare ALG to min-degree  

instead of OPT

≤

1 2 3 4
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Lower bound Upper bound

randomized 
algorithms

O(log n / log log n) [1] O(log2 n) [1]

deterministic 
algorithms O(log n / log log n) [1]

O(n) [1]

[1] Emek, Goldbraikh, Kantor ’19



Results

5

Lower bound Upper bound

randomized 
algorithms

O(log n / log log n) [1] O(log2 n) [1]

deterministic 
algorithms O(log n / log log n) [1]

O(n) [1]

O(log2 n)

[1] Emek, Goldbraikh, Kantor ’19 Our result



Results

5
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[1] Emek, Goldbraikh, Kantor ’19 Our result

Offline case: O(log n)-apx exists, not possible to improve it unless NP ⊆ DTIME(nlog log n)



The Plan

❖ Problem definition ✅
❖ Previous results ✅
❖ Min-degree known a priori 

✦ ➜ randomized O(log n)-competitive solution

✦ ➜ deterministic O(log n)-competitive solution

❖ Challenges for unknown min-degree
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Known min-degree δ
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Randomized algorithm
❖ Fix color palette P = {1, 2, …, Θ(δ/log n)}
❖ For each set: choose color u.a.r. from P

 
Analysis 
❖ Each node gets all colors from P w.h.p.
❖ This holds for all nodes w.h.p.
❖ ALG = |P| = Θ(δ/log n)  OPT / log n≥

1 2 3 4

[Pananjady, Bagaria, Vaze ’15]
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Known min-degree δ
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Deterministic algorithm
❖ Fix color palette P = {1, 2, …, Θ(δ/log n)}
❖ For each set: choose color u.a.r. from P (in a smart way)
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❖ c(i) = #colors node i collected so far 

❖
  Z(i) ≜ deg(i) − 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1
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❖ c(i) = #colors node i collected so far 

❖
  Z(i) ≜ deg(i) − 2 ⋅

c(i)

∑
j=1

|P |
|P | − j + 1

❖ Initially,  Z(i) = 0

expected number of steps to gain c(i) colors

if colors are chosen u.a.r from P

Think: 
❖ high Z(i) = bad performance of node i
❖ goal: keep all Z(i) small



How Z(i) changes if colors are chosen randomly?
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How Z(i) changes if colors are chosen randomly?

11

Case 1. i  S

❖ ∆deg(i) = 0, ∆c(i) = 0  ∆Z(i) = 0 

Case 2. i  S
❖ ∆deg(i) = 1

❖

❖ E[∆Z(i)] = 1 - 2 · 1 = -1 < 0

∉

⟹

∈

Δc(i) = {1 with probability |P | − c(i)
|P |

0 otherwise Z(i) ≜ deg(i) − 2 ⋅
c(i)

∑
j=1

|P |
|P | − j + 1

1 2 3 4

S:



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0

12

Recall the goal: keep all Z(i) small



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

12

Recall the goal: keep all Z(i) small



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

12

Recall the goal: keep all Z(i) small



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦  decreases in expectation∑n
i=1 Z(i)

12

Recall the goal: keep all Z(i) small



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦  decreases in expectation∑n
i=1 Z(i)

❖ There exists a deterministic choice of color for S, s.t.  decreases. ∑n
i=1 Z(i)

12

Recall the goal: keep all Z(i) small



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦  decreases in expectation∑n
i=1 Z(i)

❖ There exists a deterministic choice of color for S, s.t.  decreases. ∑n
i=1 Z(i)

❖ But it does not imply small values of Z(i)’s for all nodes!
❖ Dead end?

12

Recall the goal: keep all Z(i) small



Choosing a color for set S:   Applying probabilistic method (1)

❖ Initially, Z(i) = 0
❖ If we choose color for S randomly, then:

✦ each Z(i) decreases in expectation

✦  decreases in expectation∑n
i=1 Z(i)

❖ There exists a deterministic choice of color for S, s.t.  decreases. ∑n
i=1 Z(i)

❖ But it does not imply small values of Z(i)’s for all nodes!
❖ Dead end?

12

Recall the goal: keep all Z(i) small

Trick: replace Z(i) by exp(Z(i) / |P|)

Alon, Awerbuch, Azar, Buchbinder, Naor ‘03
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This is our algorithm!
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Actually (ln n + ln |P|), but a modification 
of the algorithm can fix it
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Problems with Unknown Min-degree

The presented technique requires the knowledge of min-degree:
❖ for choosing palette
❖ for down-scaling of Z(i) for exp-function ←⃪ this is not a mere technicality! 

Our approach:
❖ Each node has its own phase p (new phase when its degree doubles)
❖ Main obstacle: this results in infinitely many variables Z(i, p)
❖ We show that we can control weighted averages of Z(i, p)

16



Outlook

17

Lower bound Upper bound

randomized O(log n / log log n) [1] O(log2 n) [1]

deterministic O(log n / log log n) [1] O(log2 n)

Open questions:
❖ Close the (randomized and deterministic) gaps 
❖ What features of an online problem make randomization unnecessary?



Thank you!


