
Online Matching
with Delays and Size-based Costs

Yasushi Kawase, Tomohiro Nakayoshi

STACS 2025
2025/3/6

The University of Tokyo

Background of Online Matching

Online bipartite matching

e.g.) Ad allocation [Mehta 2013]

Online matching with delays

e.g.) Matchmaking in online games

Courier allocation in food delivery service

 Users are

matched upon arrival
Users can be put on hold

at a cost after arrival

[Karp-UVazirani-VVazirani 1990] [Emek-Kutten-Wattenhofer 2016]

In these settings, exactly 2 requests are matched each time.

1/15

Situations where requests can be processed with other than 2

⚫ Matchmaking in 𝑘-player online games

⚫ Battle royale can start even with fewer players,

⚫ but players’ satisfaction decreases in a match with fewer player.

⚫ Batch-processing API server with deep learning models

⚫ can process even if the capacity is not met,

⚫ but it is inefficient for handling many requests.

Motivation for Size-based Costs 2/15

Situations where requests can be processed with other than 2

⚫ Matchmaking in 𝑘-player online games

⚫ Battle royale can start even with fewer players,

⚫ but players’ satisfaction decreases in a match with fewer player.

⚫ Batch-processing API server with deep learning models

⚫ can process even if the capacity is not met,

⚫ but it is inefficient for handling many requests.

Motivation for Size-based Costs 2/15

Situations where requests can be processed with other than 2

⚫ Matchmaking in 𝑘-player online games

⚫ Battle royale can start even with fewer players,

⚫ but players’ satisfaction decreases in a match with fewer player.

⚫ Batch-processing API server with deep learning models

⚫ can process even if the capacity is not met,

⚫ but it is inefficient for handling many requests.

Motivation for Size-based Costs

Introduce penalty with size-based costs

2/15

Platform fills missing players with AI players to start the game

Example: 4-Player Game (e.g., CATAN)

⚫ Size cost: incurred when a match has fewer than 4 players (cost = 1)

⚫ No size cost if there are 4 players.

⚫ Players prefer matches with only human players.

⚫ Waiting cost: incurred per waiting player per unit time (cost = 1)

Goal: Minimize the sum of size cost and waiting cost.

3/15

Example: 4-Player Game

0

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0 0.2

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0 0.60.2

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0

0 0.60.2

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0

0 0.60.2 0.8

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0

0 0.60.2 0.8 1.7

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0 +0.9 + 0.9

+1

0 0.60.2 0.8 1.7

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

Example: 4-Player Game

Time

0

0.6 + 0.6+0.4 +0

+1

0 0.60.2 0.8 1.8

Size cost

Waiting cost

1.7

+0.9 + 0.9

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0

+1

0 0.60.2 0.8 1.8 2.41.7

+0.9 + 0.9

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0

+1 +1

+0.6

0 0.60.2 0.8 1.8 2.41.7

+0.9 + 0.9

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

0

0.6 + 0.6+0.4 +0

+1 +1

Total: 6

0 0.60.2 0.8 1.7 1.8 2.4

+0.6+0.9 + 0.9

Example: 4-Player Game

Time

Size cost

Waiting cost

Size cost: 1 incurs for a match with <4 players

Waiting cost: 1 incurs per waiting player per unit time

Goal: Minimize the sum of size cost and waiting cost

4/15

Comparison with Optimal Offline Solution

OPT: Optimal Offline Algorithm

Total cost: 6

Total cost: 2.8

ALG: Online Algorithm

5/15

Comparison with Optimal Offline Solution

OPT: Optimal Offline Algorithm

Total cost: 6

Total cost: 2.8

Cost Ratio:
6

2.8

Competitive ratio
Worst case cost ratio

of ALG to OPT

sup𝜎∈ℐ
ALG 𝜎

OPT 𝜎

ALG: Online Algorithm

5/15

Our Problem: Online Matching with Delays and Size-based Costs

𝑓 𝑆 + ෍

𝑣∈𝑆

(waiting time of 𝑣)

⚫ Requests arrive sequentially in real-time.

⚫ The algorithm performs matching sequentially in real-time.

⚫ All requests must be matched.

Match cost for a subset S:

size cost waiting cost

Min. total match cost

6/15

Our Problem: Online Matching with Delays and Size-based Costs

𝑓 𝑆 + ෍

𝑣∈𝑆

(waiting time of 𝑣)

This study focuses on binary penalty functions 𝑓: ℤ++ → 0, 1 .

⚫ Requests arrive sequentially in real-time.

⚫ The algorithm performs matching sequentially in real-time.

⚫ All requests must be matched.

Match cost for a subset S:

size cost waiting cost

Min. total match cost

6/15

Online Matching with Delays and Size-

based Costs (This study)

cost

Related Work

TCP Acknowledgment Problem

cost Online Weighted Cardinality Joint

Replenishment Problem with Delay

cost

[Dooly-Goldman-Scott 2001]

[Chen-Khatkar-Umboh 2022]

Online 𝒌-way Matching with Delays

cost

𝑑(𝑆): distance function

𝑆 must be 𝑘

[Melnyk-Wang-Wattenhofer 2021]

𝑓 𝑆 +෍

𝑣∈𝑆

(waiting time of 𝑣)

1 +෍

𝑣∈𝑆

(waiting time of 𝑣)

MPMDfp for single source

cost

𝑓 𝑆 = 𝑆 mod 2 (i.e., 𝑓 = (1, 0, 1, 0, 1, 0, …))

𝑓 𝑆 +෍

𝑣∈𝑆

(waiting time of 𝑣)

[Emek-Kutten-Wattenhofer 2016] [Emek-Shapiro-Wang 2019]

𝑑(𝑆) +෍

𝑣∈𝑆

(waiting time of 𝑣)

𝑓 ෍

𝑖∈ 𝑡 𝑣 𝑣∈𝑆}

𝑤𝑖 +෍

𝑣∈𝑆

(waiting time of 𝑣)

7/15

Online Matching with Delays and Size-

based Costs (This study)

cost

Related Work

TCP Acknowledgment Problem

cost Online Weighted Cardinality Joint

Replenishment Problem with Delay

cost

[Dooly-Goldman-Scott 2001]

[Chen-Khatkar-Umboh 2022]

Online 𝒌-way Matching with Delays

cost

𝑑(𝑆): distance function

𝑆 must be 𝑘

[Melnyk-Wang-Wattenhofer 2021]

𝑓 𝑆 +෍

𝑣∈𝑆

(waiting time of 𝑣)

1 +෍

𝑣∈𝑆

(waiting time of 𝑣)

MPMDfp for single source

cost

𝑓 𝑆 = 𝑆 mod 2 (i.e., 𝑓 = (1, 0, 1, 0, 1, 0, …))

𝑓 𝑆 +෍

𝑣∈𝑆

(waiting time of 𝑣)

[Emek-Kutten-Wattenhofer 2016] [Emek-Shapiro-Wang 2019]

𝑑(𝑆) +෍

𝑣∈𝑆

(waiting time of 𝑣)

𝑓 ෍

𝑖∈ 𝑡 𝑣 𝑣∈𝑆}

𝑤𝑖 +෍

𝑣∈𝑆

(waiting time of 𝑣)

can express weighted cardinality

7/15

Online Matching with Delays and Size-

based Costs (This study)

cost

Related Work

TCP Acknowledgment Problem

cost Online Weighted Cardinality Joint

Replenishment Problem with Delay

cost

monotonically non-decreasing

concave

[Dooly-Goldman-Scott 2001]

[Chen-Khatkar-Umboh 2022]

Online 𝒌-way Matching with Delays

cost

𝑑(𝑆): distance function

𝑆 must be 𝑘

[Melnyk-Wang-Wattenhofer 2021]

𝑓 𝑆 +෍

𝑣∈𝑆

(waiting time of 𝑣)

1 +෍

𝑣∈𝑆

(waiting time of 𝑣)

MPMDfp for single source

cost

𝑓 𝑆 = 𝑆 mod 2 (i.e., 𝑓 = (1, 0, 1, 0, 1, 0, …))

𝑓 𝑆 +෍

𝑣∈𝑆

(waiting time of 𝑣)

[Emek-Kutten-Wattenhofer 2016] [Emek-Shapiro-Wang 2019]

𝑑(𝑆) +෍

𝑣∈𝑆

(waiting time of 𝑣)

𝑓 ෍

𝑖∈ 𝑡 𝑣 𝑣∈𝑆}

𝑤𝑖 +෍

𝑣∈𝑆

(waiting time of 𝑣)

restricted:

can express weighted cardinality

7/15

Modified Penalty Function

𝒏 1 2 3 4 5 6 7 8 9 10 ...

𝑓(𝑛) 1 1 0 0 1 1 1 1 1 1 …

e.g.）Consider a size cost for a game playable with 3 or 4 players (Actually, CATAN is for 3-4 players).

𝑓 𝑆 + ෍

𝑣∈𝑆

(waiting time of 𝑣)Match cost for a subset S:

8/15

Modified Penalty Function

𝒏 1 2 3 4 5 6 7 8 9 10 ...

𝑓(𝑛) 1 1 0 0 1 1 1 1 1 1 …

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 (𝑛) 1 1 0 0 1 0 0 0 0 0 …

𝑓 𝑆 + ෍

𝑣∈𝑆

(waiting time of 𝑣)Match cost for a subset S:

match requests separately instead of doing at once

e.g.）Consider a size cost for a game playable with 3 or 4 players (Actually, CATAN is for 3-4 players).

8/15

Modified Penalty Function

𝒏 1 2 3 4 5 6 7 8 9 10 ...

𝑓(𝑛) 1 1 0 0 1 1 1 1 1 1 …

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 (𝑛) 1 1 0 0 1 0 0 0 0 0 …

𝑓 3 + 𝑓 3 + 𝑓(4)

𝑓 𝑆 + ෍

𝑣∈𝑆

(waiting time of 𝑣)Match cost for a subset S:

match requests separately instead of doing at once

We define a penalty function that has an optimal size cost, like the latter, as a modified penalty function.

e.g.）Consider a size cost for a game playable with 3 or 4 players (Actually, CATAN is for 3-4 players).

8/15

Result for Binary Penalty Functions

Penalty function (with modification)

(i) always 1

(ii) 0 if the size is a multiple of 𝑘

Competitive ratio

2 [Dooly-Goldman-Scott 2001]

𝚯(𝐥𝐨𝐠𝒌 / 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒌)

(iii) other scenarios

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 1 1 1 1 1 1 1 1 1 1 …

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 1 1 1 0 1 1 1 0 1 1 …

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 1 1 0 0 1 0 0 0 0 0 …

unbounded

(the number of processing is important)

(prefer size k)

9/15

Result for Binary Penalty Functions

Penalty function (with modification)

(i) always 1

(ii) 0 if the size is a multiple of 𝑘

Competitive ratio

2 [Dooly-Goldman-Scott 2001]

𝚯(𝐥𝐨𝐠𝒌 / 𝐥𝐨𝐠 𝐥𝐨𝐠 𝒌)

(iii) other scenarios

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 1 1 1 1 1 1 1 1 1 1 …

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 1 1 1 0 1 1 1 0 1 1 …

𝒏 1 2 3 4 5 6 7 8 9 10 ...

ҧ𝑓 1 1 0 0 1 0 0 0 0 0 …

unbounded

(the number of processing is important)

(prefer size k)

9/15

Algorithm Design Idea of Our Algorithm ALG

Bound ALG’s cost by 𝑶 𝜶 until OPT incurs a cost of at least 𝟏 (phase)

a real 𝛼 satisfying 𝛼𝛼 = 𝑘, where 𝛼 = Θ(log 𝑘 / log log 𝑘)

ALG moves to the next phase after ensuring that the cost of all algorithms exceeds 1．
ALG splits an instance into phases.

10/15

Algorithm Design Idea of Our Algorithm ALG

Bound ALG’s cost by 𝑶 𝜶 until OPT incurs a cost of at least 𝟏 (phase)

a real 𝛼 satisfying 𝛼𝛼 = 𝑘, where 𝛼 = Θ(log 𝑘 / log log 𝑘)

ALG moves to the next phase after ensuring that the cost of all algorithms exceeds 1．
ALG splits an instance into phases.

𝑘 = 3

Example with 3 phases

10/15

The cost of all algorithms must be evaluated per phase.

Algorithm Design Idea of Our Algorithm ALG

Bound ALG’s cost by 𝑶 𝜶 until OPT incurs a cost of at least 𝟏 (phase)

a real 𝛼 satisfying 𝛼𝛼 = 𝑘, where 𝛼 = Θ(log 𝑘 / log log 𝑘)

ALG moves to the next phase after ensuring that the cost of all algorithms exceeds 1．
ALG splits an instance into phases.

𝑘 = 3

Example with 3 phases

However, algorithms may carry over some requests from previous phases (carry).

The number of carries affects waiting and size costs, which must be considered.

The cost of all algorithms must be evaluated per phase.

10/15

It is necessary to ensure that the cost of all algorithms is at least 1.

Method to Bound OPT Cost in Each Phase

Matching a number of requests that is not a multiple of 𝑘 incurs a size cost of 1.

“All possible algorithms” are too many, so we narrow them down.

11/15

It is necessary to ensure that the cost of all algorithms is at least 1.

Method to Bound OPT Cost in Each Phase

Matching a number of requests that is not a multiple of 𝑘 incurs a size cost of 1.

Consider only algorithms that match exactly 𝑘 requests at a time.

“All possible algorithms” are too many, so we narrow them down.

11/15

It is necessary to ensure that the cost of all algorithms is at least 1.

Method to Bound OPT Cost in Each Phase

Matching a number of requests that is not a multiple of 𝑘 incurs a size cost of 1.

Consider only algorithms that match exactly 𝑘 requests at a time.

Consider only algorithms that match immediately after 𝑘 requests accumulate.

“All possible algorithms” are too many, so we narrow them down.

11/15

It is necessary to ensure that the cost of all algorithms is at least 1.

Method to Bound OPT Cost in Each Phase

Matching a number of requests that is not a multiple of 𝑘 incurs a size cost of 1.

Consider only algorithms that match exactly 𝑘 requests at a time.

Consider only algorithms that match immediately after 𝑘 requests accumulate.

Algorithm’s behavior depends only on carries.

“All possible algorithms” are too many, so we narrow them down.

11/15

It is necessary to ensure that the cost of all algorithms is at least 1.

Method to Bound OPT Cost in Each Phase

Matching a number of requests that is not a multiple of 𝑘 incurs a size cost of 1.

Consider only algorithms that match exactly 𝑘 requests at a time.

Consider only algorithms that match immediately after 𝑘 requests accumulate.

Algorithm’s behavior depends only on carries. The number of candidates reduces to 𝒌.

“All possible algorithms” are too many, so we narrow them down.

(since the number of carries never exceeds 𝑘)

11/15

It is necessary to ensure that the cost of all algorithms is at least 1.

Method to Bound OPT Cost in Each Phase

Matching a number of requests that is not a multiple of 𝑘 incurs a size cost of 1.

Consider only algorithms that match exactly 𝑘 requests at a time.

Consider only algorithms that match immediately after 𝑘 requests accumulate.

Algorithm’s behavior depends only on carries. The number of candidates reduces to 𝒌.

“All possible algorithms” are too many, so we narrow them down.

The number of candidates is 3 with 𝑘 = 3

𝟎 carry

𝟏 carry

𝟐 carries

(since the number of carries never exceeds 𝑘)

11/15

Proposed Algorithm

Manage variables ℓ, 𝒑, 𝒒 for each phase:

⚫ ℓ ∈ {0, 1, … , 𝛼}: the waiting cost of any algorithm is at least ℓ/𝛼.

⚫ 𝑝, 𝑞 ⊆ 0, 1,… , 𝑘 − 1 : the waiting cost of algorithms with carries not in [𝑝, 𝑞] is at least 1.

Ensure the waiting cost of the algorithm for each carry is at least 1

12/15

Proposed Algorithm

Manage variables ℓ, 𝒑, 𝒒 for each phase:

⚫ ℓ ∈ {0, 1, … , 𝛼}: the waiting cost of any algorithm is at least ℓ/𝛼.

⚫ 𝑝, 𝑞 ⊆ 0, 1,… , 𝑘 − 1 : the waiting cost of algorithms with carries not in [𝑝, 𝑞] is at least 1.

If ℓ ≥ 𝛼 or 𝑝, 𝑞 = 0, then the waiting cost of any algorithm is at least 1.

At the start of a phase, initialize:

⚫ ℓ = 0,

⚫ 𝑝, 𝑞 = [0, 𝑘 − 1].

Ensure the waiting cost of the algorithm for each carry is at least 1

12/15

Proposed Algorithm

Through the constant cost procedure, the variables are updated in either of the following ways:

Minimum value increase：ℓ → ℓ + 𝟏

• The waiting cost increases by 1/𝛼 for all carries.

Interval shrink： 𝒑, 𝒒 → [𝒑′, 𝒒′]

• 𝑝′, 𝑞′ ⊂ [𝑝, 𝑞]， 𝑝′, 𝑞′ ≤ 2 ⋅ 𝑝, 𝑞 /𝛼

13/15

Proposed Algorithm

Through the constant cost procedure, the variables are updated in either of the following ways:

Minimum value increase：ℓ → ℓ + 𝟏

• The waiting cost increases by 1/𝛼 for all carries.

Interval shrink： 𝒑, 𝒒 → [𝒑′, 𝒒′]

• 𝑝′, 𝑞′ ⊂ [𝑝, 𝑞]， 𝑝′, 𝑞′ ≤ 2 ⋅ 𝑝, 𝑞 /𝛼

After performing 𝑂 𝛼 iterations, we have either ℓ ≥ 𝛼 or 𝑝, 𝑞 = 0. 𝛼𝛼 = 𝑘, 𝛼 = Θ(log 𝑘 / log log 𝑘)

13/15

Proposed Algorithm

Through the constant cost procedure, the variables are updated in either of the following ways:

Minimum value increase：ℓ → ℓ + 𝟏

• The waiting cost increases by 1/𝛼 for all carries.

Interval shrink： 𝒑, 𝒒 → [𝒑′, 𝒒′]

• 𝑝′, 𝑞′ ⊂ [𝑝, 𝑞]， 𝑝′, 𝑞′ ≤ 2 ⋅ 𝑝, 𝑞 /𝛼

After performing 𝑂 𝛼 iterations, we have either ℓ ≥ 𝛼 or 𝑝, 𝑞 = 0.

Cost per phase: 𝑂 𝛼

𝛼𝛼 = 𝑘, 𝛼 = Θ(log 𝑘 / log log 𝑘)

13/15

Proposed Algorithm

Through the constant cost procedure, the variables are updated in either of the following ways:

Minimum value increase：ℓ → ℓ + 𝟏

• The waiting cost increases by 1/𝛼 for all carries.

Interval shrink： 𝒑, 𝒒 → [𝒑′, 𝒒′]

• 𝑝′, 𝑞′ ⊂ [𝑝, 𝑞]， 𝑝′, 𝑞′ ≤ 2 ⋅ 𝑝, 𝑞 /𝛼

After performing 𝑂 𝛼 iterations, we have either ℓ ≥ 𝛼 or 𝑝, 𝑞 = 0.

Competitive ratio: 𝑂(log 𝑘/log log 𝑘)Cost per phase: 𝑂 𝛼

𝛼𝛼 = 𝑘, 𝛼 = Θ(log 𝑘 / log log 𝑘)

13/15

Conclusion

Penalty Function (with modification)

(i) always 1

(ii) 0 if the size is a multiple of 𝑘

Competitive Ratio

2 [Dooly et al. 2001]

𝚯(𝐥𝐨𝐠𝒌 / 𝐥𝐨𝐠 𝐥𝐨𝐠𝒌)

(iii) other scenarios unbounded

⚫ Our algorithm can be extended to penalty functions whose range is not {0, 1}.
⚫ For some reals 𝜇 < 𝜆, the range can be {0, 𝜇} and 0 ∪ [𝜇, 𝜆].

⚫ Future work

⚫ Introduce distance cost,

⚫ Introduce party: in the same party ⇒ in the same match.

14/15

[Chen-Khatkar-Umboh 2022] Chen, Ryder, Jahanvi Khatkar, and Seeun William Umboh.
2022. “Online Weighted Cardinality Joint Replenishment Problem with Delay.” In
Proceedings of the 49th International Colloquium on Automata, Languages, and
Programming (ICALP 2022), 229:40:1-40:18. LIPIcs.

[Dooly-Goldman-Scott 2001] Dooly, Daniel R., Sally A. Goldman, and Stephen D. Scott. 2001.
“On-Line Analysis of the TCP Acknowledgment Delay Problem.” Journal of the ACM
48 (2): 243–73.

[Emek-Kutten-Wattenhofer 2016] Emek, Yuval, Shay Kutten, and Roger Wattenhofer. 2016.
“Online Matching: Haste Makes Waste!” In Proceedings of the Forty-Eighth Annual
ACM Symposium on Theory of Computing (STOC 2016), 333–44. STOC ’16.

[Mehta 2013] Mehta, Aranyak. 2013. “Online Matching and Ad Allocation.” Foundations and
Trends in Theoretical Computer Science 8 (4): 265–368.

[Melnyk-Wang-Wattenhofer 2021] Melnyk, Darya, Yuyi Wang, and Roger Wattenhofer. 2021.
“Online K-Way Matching with Delays and the H-Metric.” arXiv [Cs.DS]. arXiv.
https://doi.org/10.48550/arXiv.2109.06640.

References

[Karp-UVazirani-VVazirani 1990] Karp, Richard M., Umesh V. Vazirani, and Vijay V. Vazirani.

1990. “An Optimal Algorithm for On-Line Bipartite Matching.” In Proceedings of the
22nd Annual ACM Symposium on Theory of Computing (STOC 1990), 352–58.

[Emek-Shapiro-Wang 2019] Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost

perfect matching with delays for two sources. Theor. Comput. Sci., 754:122–129,

2019.

References

aiueo

Appendix

(i) When the penalty function is always 𝟏 [Dooly-Sally-Stephen 2001]

The optimal online algorithm matches all remaining requests whenever it performs a match.

Hardness of (ii) 0 if the size is a multiple of 𝑘

Only the timing of matches needs to be considered.

10/15

(i) When the penalty function is always 𝟏 [Dooly-Sally-Stephen 2001]

The optimal online algorithm matches all remaining requests whenever it performs a match.

(ii) When the penalty is 𝟎 if the size is a multiple of 𝒌

Any algorithm that matches all remaining requests whenever it performs a match

has a competitive ratio of Ω 𝑘 (we prove this).

Hardness of (ii) 0 if the size is a multiple of 𝑘

Only the timing of matches needs to be considered.

Both the timing and size of matches must be considered to obtain the competitive ratio

of 𝑂
log 𝑘

log log 𝑘
.

10/15

	Slide 1: Online Matching with Delays and Size-based Costs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

