PARAMETERIZED SAGA OF FIRST-FIT & LAST-FIT COLORING

Akanksha Agrawal, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, <u>Shaily Verma</u> Hasso Plattner Institute, Potsdam

STACS 2025

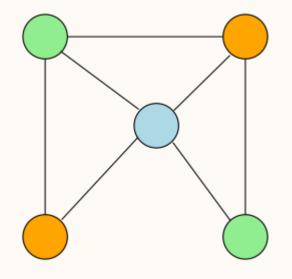
Proper Vertex Coloring

Input: A graph G := (V, E)

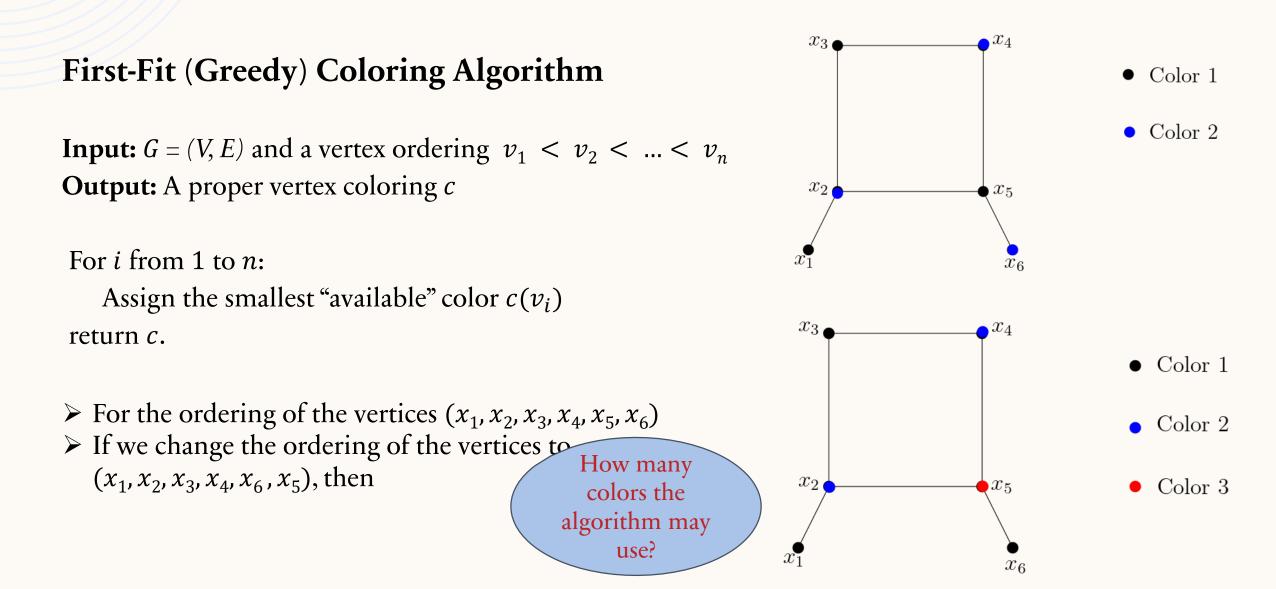
Goal: To color the vertices of the graph such that no two adjacent vertices receive the same color with as few colors as possible

Minimum number of colors used: Chromatic Number, $\chi(G)$

> NP-complete in general graphs



Graph Coloring Heuristics



Grundy Coloring

- > Minimum number of colors used: Chromatic Number, $\chi(G)$
- > Maximum number of colors used: Grundy Number, $\Gamma(G)$

Definition. Given a graph G = (V, E), a *Grundy coloring* is a proper coloring with the property: For every (i, j) with j < i, every vertex $v \in V_i$ has a neighbor in color class V_j .

Such a vertex v is called a *Grundy* (*dominator*) vertex.

Objective: Find a Grundy coloring with maximum number of colors

First studied by P. M. Grundy in 1939 [Eureka, 1939]

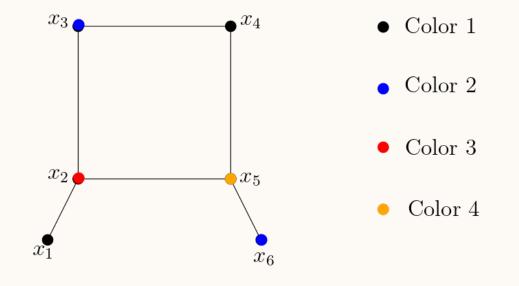
Formally introduced in 1979 by Christen and Selkow [J. Comb. Theory Ser. B, 1979]

Graph Coloring Heuristics

Any-available (Last-Fit) Algorithm

Input: *G* and a vertex ordering $v_1 < v_2 < ... < v_n$ **Output:** A proper vertex coloring *c*.

For *i* from 1 to *n*: Assign to $c(v_i)$ smallest "available" color return *c*. any (largest)



> If we take the ordering to $(x_1, x_4, x_3, x_2, x_6, x_5)$

Question: Maximum number of colors used by the algorithm? Partial Grundy number, $\delta\Gamma(G)$

Partial Grundy Coloring

Definition. Given a graph G = (V, E), a *partial Grundy coloring* is a proper coloring with the property: For every (i, j) with j < i, there exists a Grundy vertex $v \in V_i$, i.e., v has a neighbor in color class V_j .

Objective: Find a partial Grundy coloring using maximum number of colors

- ➢ First studied by Erdős et al. [Discrete Math., 2003]
- Natural bound: $\chi(G) ≤ \Gamma(G) ≤ \delta \Gamma(G) ≤ \Delta(G) + 1.$
- Both the problems are NP-complete for general graphs [Goyal & Vishwanathan, 1997] [Z. Shi et al., 2005]

Parameterized Complexity Of The Problems

• GRUNDY COLORING is W[1]-hard in general graphs parameterized by solution size k [Aboulker, Bonnet, Kim, Sikora, STACS 2020]

Ques: Is PARTIAL GRUNDY COLORING W[1]-hard in general graphs parameterized by solution size k?

• PARTIAL GRUNDY COLORING is FPT for $K_{t,t}$ -free graphs parameterized by solution size k

Ques: Design an FPT algorithm for GRUNDY COLORING for $K_{i,j}$ -free graphs parameterized by solution size k.

Our Results

Theorem. There is a randomized algorithm for *PARTIAL GRUNDY COLORING* with running time $2^{O(k^4)} n^{O(1)}$. In particular, if (G, k) is a no-instance then the algorithm outputs **No**; and if (G, k) is a yes-instance then with probability 2/3 the algorithm outputs **Yes**.

Theorem: For any fixed $i, j \in N$, there is an FPT algorithm that given a $K_{i,j}$ -free graph G and a positive integer k, decides if there is Grundy coloring of G using at least k colors.

FPT ALGORITHM FOR PARTIAL GRUNDY COLORING

FPT Algorithm for Partial Grundy Coloring

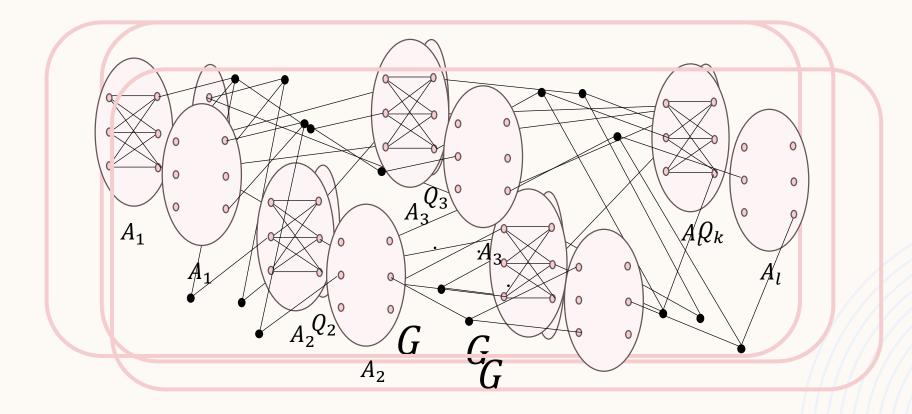
Input: A graph *G*, positive integer *k* **Question:** Does *G* have a partial Grundy coloring with at least *k* colors?

Parameter: k

Theorem [Degeneracy Reduction]. There is a polynomial-time algorithm that given a graph *G* and a positive integer *k*, does one of the following:(i) Correctly concludes that there is a partial Grundy coloring of *G* with at least *k* colors, or

(ii) Outputs at most $2k^3$ induced bicliques A_1, \dots, A_l in G such that the following holds. For any $v \in V(G)$, the degree of v in G - F is at most k^3 , where F is the union of the edges in the above bicliques.

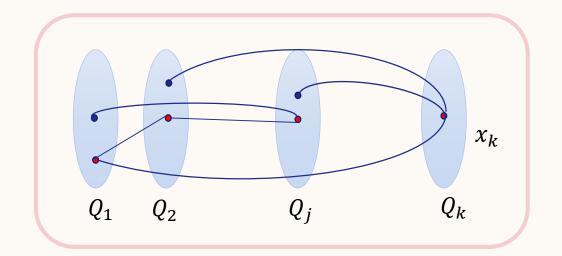
Degeneracy Reduction



Partial Grundy Witness

Def. A sequence of k-pairwise disjoint independent sets $(Q_1, Q_2, ..., Q_k)$ of a given graph G is a **k-PG witness** if:

For any $i \in [k]$, $\exists v \in Q_i$ such that $\forall j \in [i - 1]$, $Q_j \cap N_G(v) \neq \emptyset$. (\exists such that $|Q_i| \leq k, \forall i$)



Partial Grundy Witness

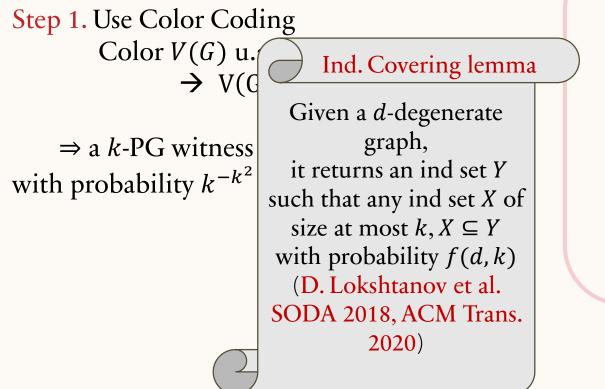
Def. A sequence of k-pairwise disjoint independent sets $(Q_1, Q_2, ..., Q_k)$ of a given graph G is a **k-PG witness** if:

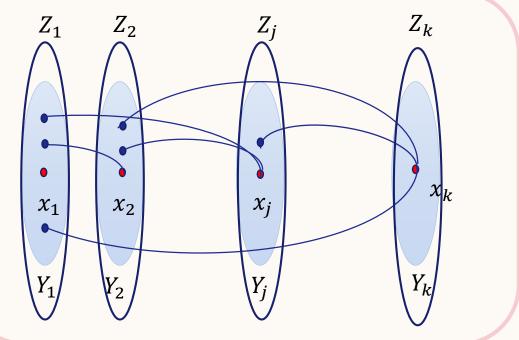
For any $i \in [k]$, $\exists v \in Q_i$ such that $\forall j \in [i - 1]$, $Q_j \cap N_G(v) \neq \emptyset$.

Observation. Given a graph G, an induced subgraph H of G, and a partial Grundy coloring of H using k colors, we can find a partial Grundy coloring of G using at least k colors in linear time.

FPT Algorithm Idea

Input: A graph *G*, an integer *k*





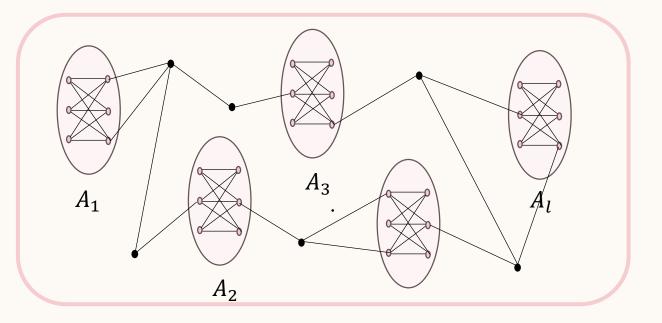
FPT Algorithm Idea

Step 2. Run algorithm of Degeneracy Reduction on instance (*G*, *k*)

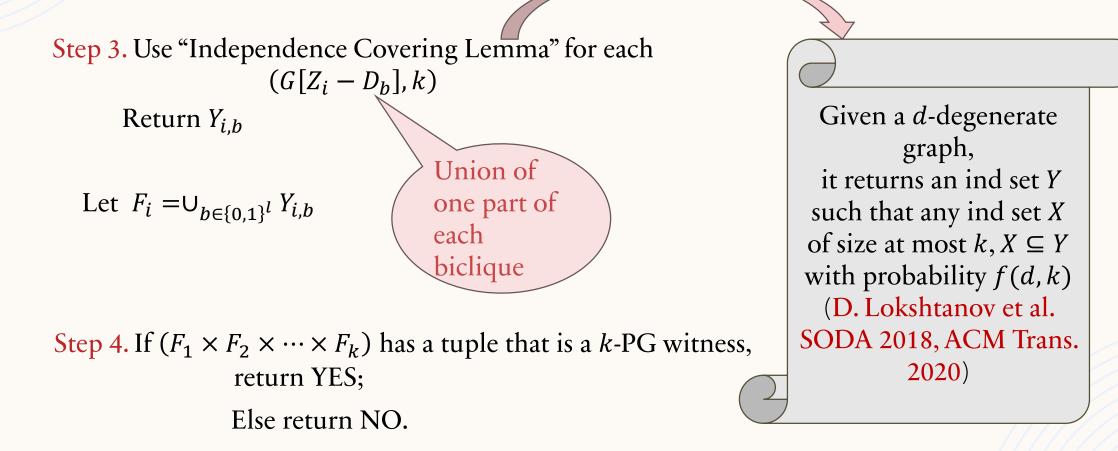
Either returns a k-PG witness;

or

Returns $A_1, A_2, ..., A_l$ bicliques, $l \le 2k^3$.



FPT Algorithm Idea



Thank You for your attention!