Polynomial Kernel and Incompressibility for Prison-Free Edge Deletion and Completion

Séhane Bel Houari-Dourand (ENS Lyon) Eduard Eiben (RHUL) Magnus Wahlström (RHUL)

STACS 2025

Séhane Bel Houari-Dourand (ENS Lyon) , Eduard Eiben Polynomial Kernel and Incompressibility for Prison-Free E

STACS 2025

A kernelization for a parameterized problem P is an algorithm that:

- **1** Reads an instance (I, k) of P, parameter k
- **2** Runs in time poly(|I| + k)
- 3 Outputs (I', k') where $|I'|, k' \le f(k)$, mapping YES-instances to YES-instances and NO-instances to NO-instances

P has a polynomial kernel if there is a kernelization with f(k) = poly(k)

H-Free Edge Editing (Deletion, Completion)

Given (G, k), change (delete, add) k edges of G so that G has no induced copy of H

2/13

A kernelization for a parameterized problem P is an algorithm that:

- **1** Reads an instance (I, k) of P, parameter k
- **2** Runs in time poly(|I| + k)
- 3 Outputs (I', k') where $|I'|, k' \le f(k)$, mapping YES-instances to YES-instances and NO-instances to NO-instances

P has a polynomial kernel if there is a kernelization with f(k) = poly(k)

H-Free Edge Editing (Deletion, Completion)

Given (G, k), change (delete, add) k edges of G so that G has no induced copy of H

Н	Graph class	Kernelization result	
P_3	Cluster graph	PK (Gramm, Guo, Hüffner, Niedermeier 2005)	
P_4	Cographs	PK (Guillemot, Havet, Paul, Perez 2014)	
K_d	-	PK (folklore)	
\mathcal{C}_ℓ , $\ell \geq 4$		No PK (Cai, Cai 2015)	
P_ℓ , $\ell \geq 5$		No PK (Cai, Cai 2015)	

If the graph class is sufficiently restricted, H-free Graph Modification can have a polynomial kernel

For most graphs, *H*-free graphs have no significant structure and no polynomial kernel

Н	Graph class	Kernelization result	
<i>P</i> ₃	Cluster graph	PK (Gramm, Guo, Hüffner, Niedermeier 2005)	
P_4	Cographs	PK (Guillemot, Havet, Paul, Perez 2014)	
K_d	-	PK (folklore)	
C_ℓ , $\ell \geq 4$		No PK (Cai, Cai 2015)	
P_ℓ , $\ell \geq 5$		No PK (Cai, Cai 2015)	

If the graph class is sufficiently restricted, H-free Graph Modification can have a polynomial kernel

For most graphs, *H*-free graphs have no significant structure and no polynomial kernel

Н	Graph class	Kernelization result
P_3	Cluster graph	PK (Gramm, Guo, Hüffner, Niedermeier 2005)
P_4	Cographs	PK (Guillemot, Havet, Paul, Perez 2014)
K_d	-	PK (folklore)
\mathcal{C}_ℓ , $\ell \geq 4$		No PK (Cai, Cai 2015)
P_ℓ , $\ell \geq 5$		No PK (Cai, Cai 2015)

If the graph class is sufficiently restricted, H-free Graph Modification can have a polynomial kernel

For most graphs, H-free graphs have no significant structure and no polynomial kernel

Cai, Cai, 2015

For any 3-connected graph H:

- H-Free Edge Editing and H-Free Edge Deletion have no polynomial kernels unless H is a clique
- *H*-Free Edge Completion has no polynomial kernel unless *H* is K_d or $K_d e$

Conjecture (Marx and Sandeep, 2022)

If H has at least five vertices, then

- *H*-Free Edge Editing has a polynomial kernel only if H is a clique or empty
- *H*-Free Edge Deletion has a polynomial kernel only if H is a clique or has at most one edge

It suffices to verify this for a finite set of 19 graphs

イロト 不得下 イヨト イヨト

Cai, Cai, 2015

For any 3-connected graph H:

- H-Free Edge Editing and H-Free Edge Deletion have no polynomial kernels unless H is a clique
- *H*-Free Edge Completion has no polynomial kernel unless *H* is K_d or $K_d e$

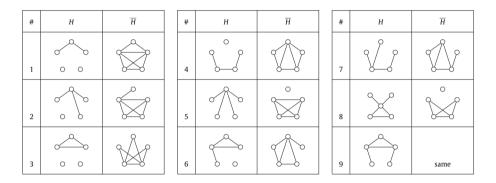
Conjecture (Marx and Sandeep, 2022)

If H has at least five vertices, then

- *H*-Free Edge Editing has a polynomial kernel only if H is a clique or empty
- *H*-Free Edge Deletion has a polynomial kernel only if *H* is a clique or has at most one edge

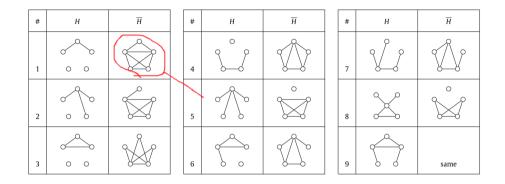
It suffices to verify this for a finite set of 19 graphs

イロト 不得下 イヨト イヨト



17 of Marx and Sandeep's 19 graphs

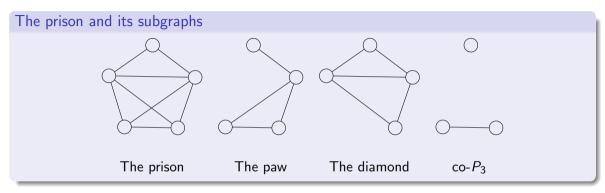
э



Main theorems

- Prison-Free Edge Deletion has a polynomial kernel
- Prison-Free Edge Completion has no polynomial kernel unless the PH collapses
- Marx and Sandeep's conjecture is wrong

Prison-free graphs

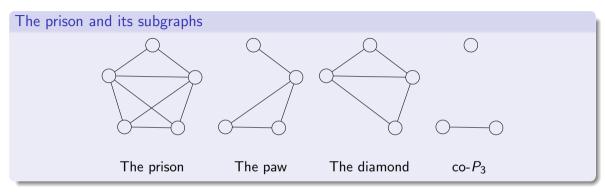


- Paw-Free Edge Modification has polynomial kernels (Eiben, Lochet, Saurabh 2020; Yuan, Ke, Cao 2021)
- Diamond-Free Edge Modification has polynomial kernels (Sandeep, Sivadasan 2015; Cao, Rai, Sandeep, Ye 2022)

Séhane Bel Houari-Dourand (ENS Lyon) , Eduard Eiben Polynomial Kernel and Incompressibility for Prison-Free E

< 回 > < 三 > < 三

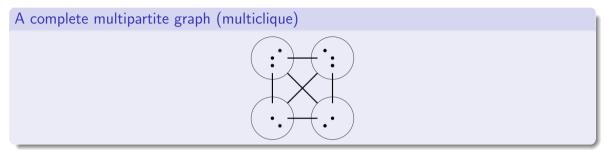
Prison-free graphs



- Paw-Free Edge Modification has polynomial kernels (Eiben, Lochet, Saurabh 2020; Yuan, Ke, Cao 2021)
- Diamond-Free Edge Modification has polynomial kernels (Sandeep, Sivadasan 2015; Cao, Rai, Sandeep, Ye 2022)

Séhane Bel Houari-Dourand (ENS Lyon), Eduard Eiben Polynomial Kernel and Incompressibility for Prison-Free E

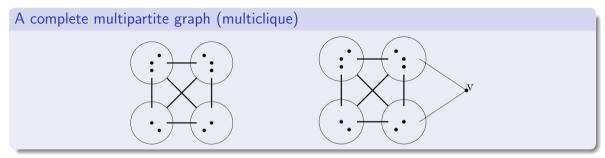
H-free graph structures



co-P3-freeComplete multipartite (multiclique)Paw-freeEvery component is multiclique or triangle-free (Olariu 1988)Diamond-freeEvery edge is in a unique maximal clique (Wallis, Zhang 1990)Prison-freeEdges which occur in K4:s are partitioned into maximal induced multiclique

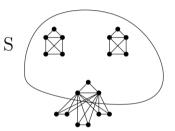
Séhane Bel Houari-Dourand (ENS Lyon) , Eduard Eiben Polynomial Kernel and Incompressibility for Prison-Free E

H-free graph structures



co- P_3 -free	Complete multipartite (multiclique)
Paw-free	Every component is multiclique or triangle-free (Olariu 1988)
Diamond-free	Every edge is in a unique maximal clique (Wallis, Zhang 1990)
Prison-free	Edges which occur in K_4 :s are partitioned into maximal induced multicliques

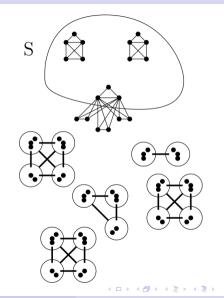
- **1** Construct a modulator S
- **2** Decomposition of G S
- 3 "No propagation" property
- 4 Marking and shrinking of components



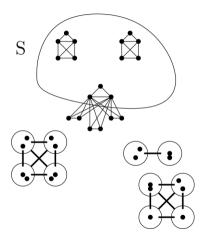
8/13

Kernelization, overview

- 1 Construct a modulator S
- **2** Decomposition of G S
- 3 "No propagation" property
- 4 Marking and shrinking of components



- **1** Construct a modulator S
- **2** Decomposition of G S
- 3 "No propagation" property
- 4 Marking and shrinking of components



8/13

Sunflower lemma (consequence)

Let \mathcal{F} be a set family of sets of size d. There is a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ such that $|\mathcal{F}| = O(k^d)$ and every set X, $|X| \leq k$ that intersects every $F \in \mathcal{F}'$ also intersects every $F \in \mathcal{F}$

• Let \mathcal{F} contain all edge sets of induced prison in G

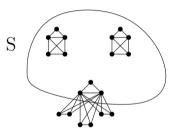


Modulator

Sunflower lemma (consequence)

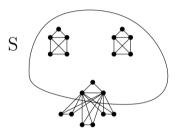
Let \mathcal{F} be a set family of sets of size d. There is a subfamily $\mathcal{F}' \subseteq \mathcal{F}$ such that $|\mathcal{F}| = O(k^d)$ and every set X, $|X| \leq k$ that intersects every $F \in \mathcal{F}'$ also intersects every $F \in \mathcal{F}$

- Let \mathcal{F} contain all edge sets of induced prison in G
- Let $S = V(\mathcal{F}')$; then $|S| = O(k^8)$
- *G* − *S* is prison-free and *S* handles all prisons in *G*



Reduction rule

If any prison has only one edge in S, delete that edge and decrease k



< 行

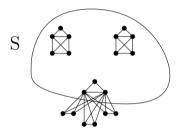
Modulator

Reduction rule

If any prison has only one edge in S, delete that edge and decrease k

Reduction rule

If any edge e is not in S and not in a K_5 or $K_5 - e$, discard e



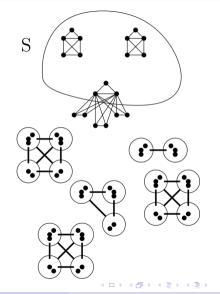
Edge decomposition of G - S

Edge decomposition

The edges of G - S partition into maximal induced multicliques

Hints:

- All edges occur in dense subgraphs with S (at least K₄'s)
- Multicliques with ≥ 4 parts can't share edges without creating a prison



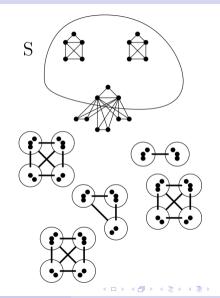
Edge decomposition of G - S

Edge decomposition

The edges of G - S partition into maximal induced multicliques

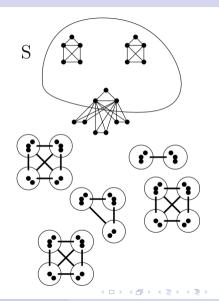
Hints:

- All edges occur in dense subgraphs with S (at least K₄'s)
- Multicliques with ≥ 4 parts can't share edges without creating a prison
- For every edge uv in S, N(uv) \ S is co-P₃-free – a multiclique!



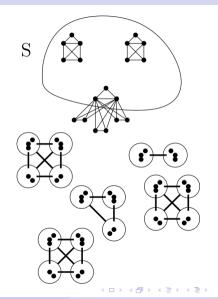
Every K_5 or $K_5 - e$ in G occurs inside $F \cup S$ for some multiclique F of G - S

 Propagation: Deleting e in prison creates another prison, etc.



Every K_5 or $K_5 - e$ in G occurs inside $F \cup S$ for some multiclique F of G - S

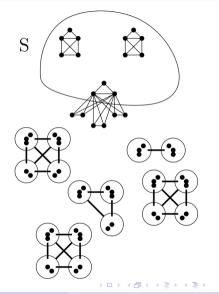
- Propagation: Deleting e in prison creates another prison, etc.
- That only happens if e is in K₅ or K₅ e in G



Propagation

Every K_5 or $K_5 - e$ in G occurs inside $F \cup S$ for some multiclique F of G - S

- Propagation: Deleting *e* in prison creates another prison, etc.
- That only happens if e is in K₅ or K₅ e in G
- No propagation multicliques act independently



- Prison-Free Edge Deletion has a polynomial kernel
- Prison-Free Edge Completion does not (see paper)
- Open 1: Prison-Free Edge Editing?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

13/13

Summary

Conjecture (Cai and Cai, 2015)

If H is 2-connected with at least six vertices, then

- H-Free Edge Editing has a polynomial kernel only if H is a clique
- *H*-Free Edge Deletion has a polynomial kernel only if H is a clique
- *H*-Free Edge Completion has a polynomial kernel only if H is missing at most one edge
- Prison-Free Edge Deletion has a polynomial kernel
- Prison-Free Edge Completion does not (see paper)
- Open 1: Prison-Free Edge Editing?
- Open 2: Is the conjecture of Cai and Cai true?