
Proof Complexity
and

Its Relations to SAT-Solving

Albert Atserias
Universitat Politècnica de Catalunya

Centre de Recerca Matemàtica
Barcelona, Catalonia, Spain

1 / 30



Overview of the talk

PART I: PROOF COMPLEXITY AND SAT

1. Propositional Logic
2. SAT-Solvers
3. Frege Systems
4. Cut-Free and Cut-Only Proofs

PART II: COMPLEXITY OF PROOF SEARCH

1. Proof Search and Automatability
2. Proof of NP-hardness for Resolution
3. An Open Problem

2 / 30



Part I

PROOF COMPLEXITY AND SAT

3 / 30



Satisfiability

Example 1: 15 variables and 40 = 20 + 20 clauses

x1 ∨ x2 ∨ x6 x1 ∨ x3 ∨ x7 x1 ∨ x4 ∨ x8 x1 ∨ x5 ∨ x9
x2 ∨ x3 ∨ x10 x2 ∨ x4 ∨ x11 x2 ∨ x5 ∨ x12 x3 ∨ x4 ∨ x13
x3 ∨ x5 ∨ x14 x4 ∨ x5 ∨ x15 x6 ∨ x7 ∨ x10 x6 ∨ x8 ∨ x11
x6 ∨ x9 ∨ x12 x7 ∨ x8 ∨ x13 x7 ∨ x9 ∨ x14 x8 ∨ x9 ∨ x15
x10 ∨ x11 ∨ x13 x10 ∨ x12 ∨ x14 x11 ∨ x12 ∨ x15 x13 ∨ x14 ∨ x15
x1 ∨ x2 ∨ x6 x1 ∨ x3 ∨ x7 x1 ∨ x4 ∨ x8 x1 ∨ x5 ∨ x9
x2 ∨ x3 ∨ x10 x2 ∨ x4 ∨ x11 x2 ∨ x5 ∨ x12 x3 ∨ x4 ∨ x13
x3 ∨ x5 ∨ x14 x4 ∨ x5 ∨ x15 x6 ∨ x7 ∨ x10 x6 ∨ x8 ∨ x11
x6 ∨ x9 ∨ x12 x7 ∨ x8 ∨ x13 x7 ∨ x9 ∨ x14 x8 ∨ x9 ∨ x15
x10 ∨ x11 ∨ x13 x10 ∨ x12 ∨ x14 x11 ∨ x12 ∨ x15 x13 ∨ x14 ∨ x15

4 / 30



Diagonal Ramsey Numbers R(k , k)

R(3, 3) ≤ 6

In every party of six,
either three of them are mutual friends,
or three of them are mutual strangers.

5 / 30



Ramsey Numbers, Erdős, and the Aliens

Erdős asks us to imagine an alien force, vastly more pow-
erful than us, landing on Earth and demanding the value
of R(5, 5) or they will destroy our planet. In that case, he
claims, we should marshal all our computers and all our
mathematicians and attempt to find the value. But sup-
pose, instead, that they ask for R(6, 6). In that case, he
believes, we should attempt to destroy the aliens.

Joel Spencer, Ten Lectures on the Probabilistic Method,
1994.

6 / 30



Encodings Can Be Subtle

Different encoding: nk vs k2n2.

bu,v : “the pair {u, v} is colored blue (else red)”
xi ,u : “u is the i-th vertex of a blue k-clique”
yi ,v : “v is the i-th vertex of a red k-clique”

xi ,1 ∨ · · · ∨ xi ,n for all i ,
xi ,u ∨ xj ,u for all i ̸= j and all u,
xi ,u ∨ xj ,v ∨ bu,v for all i ̸= j and all u ̸= v ,

yi ,1 ∨ · · · ∨ yi ,n for all i ,
yi ,u ∨ yj ,u for all i ̸= j and all u,

yi ,u ∨ yj ,v ∨ bu,v for all i ̸= j and all u ̸= v ,

7 / 30



More satisfiability

Example 2: Automaton accepts some n-symbol word.

q0start q1 q2

a

a

b

a

xi : “the i-th symbol in word is a (else b)”
st,q : “after reading t symbols the state is q”

s0,q0
st,q0 ∨ xt ∨ st+1,q0 ∨ st+1,q1 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q2 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q0 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q1 for t = 0, 1, . . . , n
st,q0 ∨ xt ∨ st+1,q2 for t = 0, 1, . . . , n
...
sn,q2

8 / 30



Cook-Levin and Fagin Theorems

Theorem [Cook-Levin 1971] SAT is NP-complete.

A is in NP
iff
A can be reduced to SAT
by polynomial-time reductions.

Theorem [Fagin 1974] NP = ESO.

A is in NP
iff
A is a satisfiability problem itself, i.e.,
iff
A is the set of finite models of
a formula of the existential fragment

of second-order logic ∃R ∀x ∃y qf

9 / 30



SAT-Solvers

An algorithm which:

Given a set of clauses F , finds:

either a satisfying assignment
or a proof of unsatisfiability

Caution:

For formulas with 1000 variables,
the search space is ridiculously HUGE!

10 / 30



“200 TB maths proof is largest ever” [Nature 2016]

Theorem [Heule-Kullmann-Marek 2016]
The numbers 1, . . . , 7825 cannot be partitioned
into two parts each without Pythagorean triples.

But the numbers 1, . . . , 7824, can.

a2 + b2 = c2

a2 + b2 = c2

11 / 30



The Coloring of 1, . . . , 7824

a2 + b2 ̸= c2

a2 + b2 ̸= c2

Source of image: Wikipedia
12 / 30



Certificates

Recall:

Given a set of clauses F , algorithm finds:

either a satisfying assignment
or a proof of unsatisfiability

An annoying asymetry:

Satisfying assignments are always small.
Proofs of unsatisfiability tend to be exponentially bigger.

This, among other reasons, motivates the study of
propositional proof complexity.

13 / 30



Frege Systems, aka Hilbert-style Proof Systems

Language:

→, ¬

Modus ponens:

A A → B

B

Axioms:

A → (B → A)
(C → (B → A)) → ((C → B) → (C → A))
(D → (B → A)) → (B → (D → A))
(B → A) → (¬A → ¬B)
¬¬A → A
A → ¬¬A

14 / 30



Gottlob Frege, Begriffsschrift, Universität Jena, 1879

Source: Wikipedia
Guus Hoekman

15 / 30



Cook-Reckhow Theorem: Birth of Proof Complexity

Theorem [Cook-Reckhow’1979]
Any two Frege systems polynomially simulate each other.

Notes:

• Polynomial simulation ≡ polynomial time translations exist.

• Also for “Extended Frege Systems”: abbreviations allowed.

• Mild conditions apply: soundness, implicational completeness,
complete basis of connectives.

16 / 30



Tait Style Systems

Language: ∧, ∨, xi , xi (Negation Normal Form: A and A)

Rules: Axiom, Weakening, Conjunction, Cut

A ∨ A

A

A ∨ B

A ∨ C B ∨ D

A ∨ B ∨ (C ∧ D)

A ∨ C B ∨ C

A ∨ B

Soundness: Obvious
Completeness: Also almost obvious; even cut-free!
Quantitative completeness:

2#vars(F ) ·#gates(F ).

Resolution
def≡ cut-only proofs from clauses to clauses.

17 / 30



Proofs

Goal: Prove F is unsatisfiable. Means: Build up F from axioms.

F

F ∨ Q

F ∨ Q ∨ Q0

+
...

+
...

F ∨ Q ∨ Q0

+
...

+
...

F ∨ Q

F ∨ Q ∨ Q1

+
...

+
...

F ∨ Q ∨ Q1

+
...

+
...

18 / 30



Decision Trees

Goal: Prove F is unsatisfiable. Means: Reduce F to axioms

F 7→ 1
Q?

F 7→ 1
Q 7→ 0

Q0?

F 7→ 1
Q 7→ 0
Q0 7→ 0

Q00?

...
−

...
−

F 7→ 1
Q 7→ 0
Q0 7→ 1

Q01?

...
−

...
−

F 7→ 1
Q 7→ 1

Q1?

F 7→ 1
Q 7→ 1
Q1 7→ 0

Q10?

...
−

...
−

F 7→ 1
Q 7→ 1
Q1 7→ 1

Q11?

...
−

...
−

19 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Quantitative Equivalence (With a But)

Theorem [Buss-Pudlak’1995]

1. If there is a decision tree proof of F with L nodes,
then there is a proof of F with poly(L) lines.

2. If there is a proof of F with L lines,
then there is a decision tree proof of F with poly(L) nodes.

Notes:

• 1 is direct because trees are very regular: turn upside down.

• 1 gives proofs whose lines are disjunctions of (co-)queries.

• 1 remains true if lines are clauses and queries are literals.

• 2 is not direct because proofs can be very irregular; indeed:

• 2 provably not true if lines are clauses and queries are literals.

Separation: Pebbling Formulas [Ben-Sasson-Wigderson’99].

20 / 30



Solution: Decision DAGs

ℓ1 ∨ ℓ2?

ℓ1 ∨ ℓ2 7→ 0 ℓ1 ∨ ℓ2 7→ 1

ℓ1?

ℓ2?

ℓ1 ∨ ℓ2 7→ 0 ℓ1 ∨ ℓ2 7→ 1

0 1

0

0

1

1

21 / 30



Resolution

Definition Given F = C1 ∧ · · · ∧ Cm with each Ci a clause, a
Resolution refutation of F is a cut-only proof

C1, . . . ,Cm,D1,D2, . . . ,DL = ∅

of the ∅ from the Ci .

Proposition
Up to multiplicative constants, the following are the same:

1. Decision trees with clause-queries and L nodes.

2. Decision dags with literal-queries and L nodes.

3. Tree-like DNF-proofs of length L.

4. Dag-like clause-proofs of length L.

5. Resolution refutations of length L.

22 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search

2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation

3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning

4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level

5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses

6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions

7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)

8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)

9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing

10. Symmetry breaking
11. ...

23 / 30



Back to SAT-Solvers

DPLL: Searches for tree-like Resolution proofs
CDCL: Searches for dag-like Resolution proofs

Some of the Key Ideas:

1. Backtracking search
2. Greedy unit clause propagation
3. Memoization following conflict analysis: aka clause learning
4. Backjumping possibly more than one level
5. Frequent restarts keeping (some of the) learned clauses
6. Deletions
7. Ultrafast unit clause propagation (2 watched literal rule)
8. Ultrafast decision heuristic based on activity (VSIDS)
9. Preprocessing and inprocessing
10. Symmetry breaking
11. ...

23 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Execution Trace of CDCL-Based SAT-Solvers

ℓ1

ℓ2 ℓ3

− ℓ4 ℓ5

− − − −

1

2 3 4

5 6 7 8

9

10 11

12 13 14

15 16 17 18

19

20

11. decide
12. decide
13. conflict / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
10. conflict / learn
11. propagate
12. decide
13. conflict with learned / learn
14. propagate
15. decide
16. conflict / learn
17. propagate
18. conflict / analysis
19. conflict / analysis
20. conflict / learn empty clause

24 / 30



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices [Atserias-Fichte-Thurley’09]

25 / 30



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices [Atserias-Fichte-Thurley’09]

25 / 30



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices [Atserias-Fichte-Thurley’09]

25 / 30



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices [Atserias-Fichte-Thurley’09]

25 / 30



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices [Atserias-Fichte-Thurley’09]

25 / 30



Comparison with Resolution

Theorem [Beame-Kautz-Sabharwal’2004]
If a CNF F with n variables has a Resolution refutation of length L,
then there is a sequence of non-deterministic ideal choices for
CDCL with restarts, rebranching, and any non-redundant learning
scheme that learns the empty clause in O(nL) steps.

Notes

• The “rebranching” is never done in real solvers

• Later removed at cost O(n4L) [Pipatsrisawat-Darwiche’09]

• Is non-determinism essential? ... now answered (next lecture)

• For bounded width Resolution (e.g., 2-SAT, bounded
tree-width), randomness suffices [Atserias-Fichte-Thurley’09]

25 / 30



Lower Bounds for Resolution

Theorem [Haken’1986]
Every Resolution refutation of the Pigeonhole Principle formulas
PHPn+1

n must have length 2Ω(n).

Pigeonhole Principle Formulas PHPn+1
n :

pu,j : “pigeon u ∈ {1, . . . , n + 1} flies to hole j ∈ {1, . . . , n}”

pu,1 ∨ · · · ∨ pu,n for all u
pu,j ∨ pv ,j for all u ̸= v and all j

26 / 30



Random Restriction Method in Three Steps: I

STEP I: Choose a suitable collection H of partial assignments α,
so that the restricted formula PHPn+1

n |α is isomorphic to a smaller
instance PHPm+1

m of itself.

Here:

Let H be the set of partial assignments α that describe
partial matchings of n −m pigeons to n −m holes.

α(pu,j) = 1 if u is matched to j
α(pu,j) = 0 if u is matched to j ′ ̸= j
α(pu,j) = 0 if u is not matched and j is matched
α(pu,j) = pu,j if u is not matched and j is not matched.

We will choose m = n/2.

27 / 30



Random Restriction Method in Three Steps: II

STEP II: Define a suitable notion of weak clause that is very likely
true under a random partial assignment from H.

Here:

A pigeon u is n-weak in the clause if the clause has
• n/2 positive literals pu,j1 , . . . , pu,jn/2 of pigeon u, or
• a negative literal pu,j of pigeon u.

A clause is n-weak if there are n/2 many n-weak pigeons in it.

Rough estimation of probability:

• Fix a weak clause C ; choose α ∈ H at random.
• Roughly (n −m)/2 = n/4 of the matched pigeons are weak.
• Roughly 1/2 of the positive ones satisfy C .
• Roughly 1− 1/(n −m) ≥ 1/2 of the negative ones satisfy C .

Pr
α∈H

[C |α ̸= 1] ≲ (1/2)n/4
28 / 30



Random Restriction Method in Three Steps: III

STEP III: Show that every Resolution refutation of PHPm+1
m must

contain at least one n-weak clause.

Here:

• For contradiction, fix a refutation without n-weak clauses.
• By m = n/2, in all clauses, not all pigeons are n-weak.
• Walking up the dag from the empty clause to the axioms, do:
• Sustain a partial matching from m pigeons to m holes.
• The partial matching will falsify the current clause.
• And the unmatched pigeon will not be weak in current clause.
• Initially: any matching works since all falsify the empty clause.
• At an inference step resolving on pu,j :
• Follow the falsified clause.
• If unmatched pigeon became weak, exchange with non-weak.
• Eventually we reach a clause of PHPm+1

m .
• Contradiction: our partial matchings do not falsify those.
QED

29 / 30



END OF PART I

30 / 30


	PROOF COMPLEXITY AND SAT

