
Proof Complexity
and

Its Relations to SAT-Solving

Albert Atserias
Universitat Politècnica de Catalunya

Centre de Recerca Matemàtica
Barcelona, Catalonia, Spain

1 / 19



Overview of the talk

PART I: PROOF COMPLEXITY AND SAT

1. Propositional Logic
2. SAT-Solvers
3. Frege Systems
4. Cut-Free and Cut-Only Proofs

PART II: COMPLEXITY OF PROOF SEARCH

1. Proof Search and Automatability
2. Proof of NP-hardness for Resolution
3. An Open Problem

2 / 19



Part II

COMPLEXITY OF PROOF SEARCH

3 / 19



Automatability : Searching for Short Proofs

Definition [Bonet-Pitassi-Raz’1999]
A proof system P is automatable in time T (s) if there is an
algorithm that given a tautology F finds a P-proof of F in
time T (s∗), where s∗ is the size of the smallest P-proof of F .

A Fundamental Question

Which proof systems are automatable in non-trivial time?

4 / 19



Automatability : Searching for Short Proofs

Definition [Bonet-Pitassi-Raz’1999]
A proof system P is automatable in time T (s) if there is an
algorithm that given a tautology F finds a P-proof of F in
time T (s∗), where s∗ is the size of the smallest P-proof of F .

A Fundamental Question

Which proof systems are automatable in non-trivial time?

4 / 19



A Non-Trivial Notion

An Early Lower Bound:

Theorem [Krajicek-Pudlak’1994]
Extended Frege systems are not automatable in time T (s),
unless n-bit RSA cryptosystem can be broken in time T (poly(n)).

An Early Upper Bound:

Theorem [Beame-Pitassi’1998]
Tree-like Resolution is automatable in time T (s) = sO(log s).

5 / 19



A Non-Trivial Notion

An Early Lower Bound:

Theorem [Krajicek-Pudlak’1994]
Extended Frege systems are not automatable in time T (s),
unless n-bit RSA cryptosystem can be broken in time T (poly(n)).

An Early Upper Bound:

Theorem [Beame-Pitassi’1998]
Tree-like Resolution is automatable in time T (s) = sO(log s).

5 / 19



Beame-Pitassi Algorithm

1. guess the root literal ℓ
(2n choices only)

2. recurse with parameter s/2
(abort the branch if it fails)

3. recurse with parameter s − 1
(it must succeed).

ℓ

< s/2

< s

0 1

T (n, s) ≤ 2nT (n − 1, s/2) + T (n − 1, s − 1)

T (n, s) = nO(log s) ≤ sO(log s).

6 / 19



Non-Automatability of Resolution

Theorem [Atserias-Müller’2019]
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

Theorem [de Rezende’2021]
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

Notes:

• Compare with Beame-Pitassi algorithm!

• Improved earlier results of [Alekhnovich-Razborov’2001]

• Introduced a new method for proving non-automatability

• Correctness of the reduction involves proving a lower bound!

7 / 19



Non-Automatability of Resolution

Theorem [Atserias-Müller’2019]
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

Theorem [de Rezende’2021]
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

Notes:

• Compare with Beame-Pitassi algorithm!

• Improved earlier results of [Alekhnovich-Razborov’2001]

• Introduced a new method for proving non-automatability

• Correctness of the reduction involves proving a lower bound!

7 / 19



Non-Automatability of Resolution

Theorem [Atserias-Müller’2019]
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

Theorem [de Rezende’2021]
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

Notes:

• Compare with Beame-Pitassi algorithm!

• Improved earlier results of [Alekhnovich-Razborov’2001]

• Introduced a new method for proving non-automatability

• Correctness of the reduction involves proving a lower bound!

7 / 19



Proof Strategy for NP-Hardness

We want a polynomial-time reduction:

from n-variable SAT
to min proof-size approximation for Resolution (R).

F GF

poly(n) time

Requirements:

1. If F is satisfiable, then SIZER(GF ) ≤ poly(n).

2. If F is unsatisfiable, then SIZER(GF ) ̸≤ exp(Ω(n)).

8 / 19



Choice of the Formula GF : the REF Formulas

REFF ,s = “the CNF formula F has an R-refutation of length s”

Variables:

Du,i ,b : “line u contains variable xi with sign b ∈ {0, 1}”
Iu,j : “line u is an initial assumption; the j-th clause of F”
Vu,i : “line u is derived by resolving on variable xi”
Lu,v : “line u is derived using v as left assumption”
Ru,v : “line u is derived using v as right assumption”
Au : “line u is active; i.e., actually used in the proof”

Clauses (a sample):

Au ∨ Vu,i ∨ Lu,v ∨ Dv ,i ,1 Au ∨ Vu,i ∨ Ru,v ∨ Dv ,i ,0 Ds,i ,b

Au ∨ Vu,i ∨ Lu,v ∨ Av Au ∨ Vu,i ∨ Ru,v ∨ Av As

· · ·
9 / 19



Requirement 1 : The Upper Bound

If F is satisfiable, then SIZER(REFF ,nc ) ≤ poly(n).

Proof idea:

Use a satisfying assignment α of F to nail down the refutation!

Proof sketch:

• Prove that every active line contains a literal satisfied by α.

• Concretely, derive the clauses

Tu := Au ∨
n∨

i=1

Du,i ,α(i) for u = 1, 2, . . . , L.

• Produce empty clause by resolving Ts with As and the Ds,i ,b.

QED

10 / 19



Requirement 2 : The Lower Bound

If F is unsatisfiable, then SIZER(REFF ,nc ) ̸≤ exp(Ω(n)).

Proof idea:

Use a model β∗ of REFF ,2n to construct
a collection of “pseudo-models” β for REFF ,nc .

β∗ |= REFF ,2n

2n

β ̸|= ¬REFF ,nc

nc

11 / 19



The Lower Bound in Three Steps

• Identify a set H of α such that REFF ,s |α ∼= REFF ,s/2.

• Here: let α set 1/2 of all lines as inactive (but not the last).

• And let α also set all other variables of those lines.

• Identify a notion of weak clause made likely true by random α.

• Here: the clauses that mention more than n/2 lines.

• Calculation: Prα∈H [C |α ̸= 1] ≤ (3/4)n/2.

• Prove that refutations of REFF ,s/2 must contain weak clauses.

• Walk up the dag from empty clause to axioms, and do:

• Sustain a matching between active lines and the lines in β∗.

• The corresponding assignments are the “pseudo-models” β.

QED

12 / 19



Reminder

Theorem
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

✓

Theorem
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

13 / 19



The Tree-Like Case

We want a reduction:

from n-variable SAT
to min proof-size approximation for tree-like R (called R∗).

F GF

exp(o(n)) time

Requirements:

1. If F is satisfiable, then SIZER∗(GF ) ≤ exp(O(
√
n)).

2. If F is unsatisfiable, then SIZER∗(GF ) ̸≤ exp(Ω(n)).

14 / 19



Modification of the Formula GF : Shallow REF

Key Observation:

In the “F is unsatisfiable” case,
the model β∗ of REFF ,2n happens to be:
tree-like and layered, and have depth n.

β∗ |= REFF ,2n

√
n

√
n

2n

√
n

√
n

2n

√
n

√
n

2n

√
n

√
n

2n

√
n

√
n

2n

β ̸|= ¬REFF ,2√n

2
√
n

15 / 19



Modification of the Formula in More Details

• Modify the formula GF ; now REFF ,s |γ with s = 2
√
n.

• The γ restricts A,D, I ,V , L,R in a way compatible with β∗:
• Instead of arbitrary dag-depth, impose depth n.
• Instead of arbitrary structure, impose

√
n layers of depth

√
n.

• Instead of poly(n)-size layers, allow layers of size 2
√
n.

• Instead of full connectivity between layers, place expanders.
• Their bounded degree d ensures tree-like size d

√
n = 2O(

√
n).

• Their expansion property ensures matchability with β∗.

2
√
n

• • •• • •• • •
• • •

√
n

16 / 19



Reminder

Theorem
Resolution is not automatable in time T (s), [poly-time]
unless n-variable SAT is solvable in time T (poly(n)) [P = NP].

✓

Theorem
Tree-Like Resolution is not automatable in time T (s) = so(log s),
unless n-variable SAT is solvable in randomized time 2o(n).

✓

17 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

• Weak automatability is about short vs. impossible refutability.

• Therefore: it cannot be harder than NP ∩ co-NP.

• For Resolution, the problem is PARITY GAMES hard [BPT].

• For (Extended) Frege, the problem is RSA-hard [KP,BPR].

18 / 19



END OF PART II
AND OF TUTORIAL

19 / 19


	PROOF COMPLEXITY AND SAT
	COMPLEXITY OF PROOF SEARCH

