Proof Complexity
and
lts Relations to SAT-Solving

Albert Atserias
Universitat Politecnica de Catalunya
Centre de Recerca Matematica
Barcelona, Catalonia, Spain

1/19



Overview of the talk

PART I: PROOF COMPLEXITY AND SAT

1. Propositional Logic

2. SAT-Solvers

3. Frege Systems

4. Cut-Free and Cut-Only Proofs

PART II: COMPLEXITY OF PROOF SEARCH

1. Proof Search and Automatability
2. Proof of NP-hardness for Resolution
3. An Open Problem

2/19



Part |l

COMPLEXITY OF PROOF SEARCH

3/19



Automatability : Searching for Short Proofs

Definition

A proof system P is automatable in time T (s) if there is an
algorithm that given a tautology F finds a P-proof of F in
time T(s*), where s* is the size of the smallest P-proof of F.

4/19



Automatability : Searching for Short Proofs

Definition

A proof system P is automatable in time T (s) if there is an
algorithm that given a tautology F finds a P-proof of F in
time T(s*), where s* is the size of the smallest P-proof of F.

A Fundamental Question

Which proof systems are automatable in non-trivial time?

4/19



A Non-Trivial Notion

An Early Lower Bound:

Theorem
Extended Frege systems are not automatable in time T(s),
unless n-bit RSA cryptosystem can be broken in time T (poly(n)).

5/19



A Non-Trivial Notion

An Early Lower Bound:

Theorem
Extended Frege systems are not automatable in time T(s),
unless n-bit RSA cryptosystem can be broken in time T (poly(n)).

An Early Upper Bound:

Theorem
Tree-like Resolution is automatable in time T(s) = s9(lo89).

5/19



Beame-Pitassi Algorithm

1. guess the root literal ¢
(2n choices only)

0 1
2. recurse with parameter s/2
(abort the branch if it fails) A
3. recurse with parameter s — 1 <s/2
(it must succeed).
<s

T(n,s)<2nT(n—1,5/2)+ T(n—1,s—1)

T(n,s) — pnO(logs) < 5O(logs)

6/19



Non-Automatability of Resolution

Theorem
Resolution is not automatable in time T(s), [poly-time]
unless n-variable SAT is solvable in time T(poly(n)) [P = NP].

7/19



Non-Automatability of Resolution

Theorem
Resolution is not automatable in time T(s), [poly-time]
unless n-variable SAT is solvable in time T(poly(n)) [P = NP].

Theorem

Tree-Like Resolution is not automatable in time T(s) = so(logs),
unless n-variable SAT is solvable in randomized time 2°(").

7/19



Non-Automatability of Resolution

Theorem
Resolution is not automatable in time T(s), [poly-time]
unless n-variable SAT is solvable in time T(poly(n)) [P = NP].

Theorem
Tree-Like Resolution is not automatable in time T(s) = so(logs),
unless n-variable SAT is solvable in randomized time 2°(")

Notes:
® Compare with Beame-Pitassi algorithm!
® |mproved earlier results of
® |ntroduced a new method for proving non-automatability

e Correctness of the reduction involves proving a lower bound!

7/19



Proof Strategy for NP-Hardness

We want a polynomial-time reduction:

from n-variable SAT
to min proof-size approximation for Resolution (R).

poly(n) time
é F

Requirements:
1. If F is satisfiable, then SIZER(GF) < poly(n).
2. If Fis unsatisfiable, then SIZER(GF) £ exp(2(n)).

8/19



Choice of the Formula Gf : the REF Formulas

REFFs = “the CNF formula F has an R-refutation of length s’
Variables:
D,ip : “line u contains variable x; with sign b € {0,1}"
Ly . "line u is an initial assumption; the j-th clause of F"
Vi . "line u is derived by resolving on variable x;"
Ly, : ‘line uis derived using v as left assumption”
Ruv “line u is derived using v as right assumption”
A, . "line u is active; i.e., actually used in the proof”

Clauses (a sample):

vV Dy i1 E V VyuiVRu,VDyio Ds i b
u Vu,i Lu vV Av Au V Vu,i V Ru,v V Av As

9/19



Requirement 1 : The Upper Bound
If Fis satisfiable, then SIZER(REF £ nc) < poly(n).

Proof idea:
Use a satisfying assignment « of F to nail down the refutation!

Proof sketch:
® Prove that every active line contains a literal satisfied by a.

e Concretely, derive the clauses

T, = A,V \/ Dy a(i) foru=1,2,..., L

® Produce empty clause by resolving Ts with Ag and the D ; p.

QED

10/19



Requirement 2 : The Lower Bound
If Fis unsatisfiable, then SIZER(REFF£ pe) £ exp(2(n)).

Proof idea:

Use a model 3* of REFF 2n to construct
a collection of “pseudo-models” 3 for REFF je.

21 n¢

B* |= REFF o B b ~REF £ e

11/19



The Lower Bound in Three Steps

® Identify a set H of a such that REFf ¢|, = REFg ;.
® Here: let o set 1/2 of all lines as inactive (but not the last).

e And let «v also set all other variables of those lines.

® |dentify a notion of weak clause made likely true by random c.
® Here: the clauses that mention more than n/2 lines.
* Calculation: Praep[Cla # 1] < (3/4)"/2.

® Prove that refutations of REFfg ;» must contain weak clauses.

® Walk up the dag from empty clause to axioms, and do:

® Sustain a matching between active lines and the lines in 3*.

® The corresponding assignments are the “pseudo-models” f.
QED

12/19



Reminder

Theorem
Resolution is not automatable in time T(s), [poly-time] |
unless n-variable SAT is solvable in time T (poly(n)) [P = NPJ.

Theorem
Tree-Like Resolution is not automatable in time T(s) = s°(ogs),
unless n-variable SAT is solvable in randomized time 2°(")

13/19



The Tree-Like Case

We want a reduction:

from n-variable SAT
to min proof-size approximation for tree-like R (called R*).

exp(o(n)) time

Gr

Requirements:
1. If F is satisfiable, then SIZEg+(Gf) < exp(O(y/n))
2. If F is unsatisfiable, then SIZEg+(Gf) £ exp(€2(n))

14 /19



Modification of the Formula Gg : Shallow REF

Key Observation:

In the “F is unsatisfiable” case,
the model 3* of REFF 2» happens to be:
tree-like and layered, and have depth n.

2n ovn

V| vl

B3* = REFE on B = ~REF g 55

15/19



Modification of the Formula in More Details

Modify the formula Gg; now REFE (|, with s = 2v7.

The v restricts A, D, I, V,L R in a way compatible with 5*:
Instead of arbitrary dag-depth, impose depth n.

Instead of arbitrary structure, impose /n layers of depth /n.
Instead of poly(n)-size layers, allow layers of size 2V7.
Instead of full connectivity between layers, place expanders.
Their bounded degree d ensures tree-like size dvn = 20(Vn)
Their expansion property ensures matchability with 5*.

ov/n

16/19



Reminder

Theorem
Resolution is not automatable in time T(s), [poly-time] |
unless n-variable SAT is solvable in time T(poly(n)) [P = NPJ.

Theorem
Tree-Like Resolution is not automatable in time T(s) = s°(°gs) |/
unless n-variable SAT is solvable in randomized time 2°(")

17/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

18/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

18/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

e Automatability is about short vs. not short refutability.

18/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:
e Automatability is about short vs. not short refutability.

® Weak automatability is about short vs. impossible refutability.

18/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

e Automatability is about short vs. not short refutability.

® Weak automatability is about short vs. impossible refutability.

® Therefore: it cannot be harder than NP N co-NP.

18/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:

e Automatability is about short vs. not short refutability.

® Weak automatability is about short vs. impossible refutability.

® Therefore: it cannot be harder than NP N co-NP.
® For Resolution, the problem is PARITY GAMES hard

18/19



Big Remaining Open Problem

WEAK AUTOMATABILITY OF RESOLUTION?

For Resolution specifically:

Is it computationally feasible to
distinguish satisfiable formulas
from shortly refutable formulas?

Notes:
e Automatability is about short vs. not short refutability.
® Weak automatability is about short vs. impossible refutability.
® Therefore: it cannot be harder than NP N co-NP.
® For Resolution, the problem is PARITY GAMES hard
® For (Extended) Frege, the problem is RSA-hard

18/19



END OF PART Il
AND OF TUTORIAL



	PROOF COMPLEXITY AND SAT
	COMPLEXITY OF PROOF SEARCH

