Proof Complexity and Its Relations to SAT-Solving

Albert Atserias

Universitat Politècnica de Catalunya Centre de Recerca Matemàtica Barcelona, Catalonia, Spain

イロン イボン イヨン イヨン 三日

PART I: PROOF COMPLEXITY AND SAT

- 1. Propositional Logic
- 2. SAT-Solvers
- 3. Frege Systems
- 4. Cut-Free and Cut-Only Proofs

PART II: COMPLEXITY OF PROOF SEARCH

- 1. Proof Search and Automatability
- 2. Proof of NP-hardness for Resolution
- 3. An Open Problem

Part II

COMPLEXITY OF PROOF SEARCH

<ロト < 回 > < 臣 > < 臣 > < 臣 > 三 の Q (C 3/19 **Definition** [Bonet-Pitassi-Raz'1999] A proof system P is automatable in time T(s) if there is an algorithm that given a tautology F finds a P-proof of F in time $T(s^*)$, where s^* is the size of the smallest P-proof of F.

Definition [Bonet-Pitassi-Raz'1999] A proof system P is automatable in time T(s) if there is an algorithm that given a tautology F finds a P-proof of F in time $T(s^*)$, where s^* is the size of the smallest P-proof of F.

A Fundamental Question

Which proof systems are automatable in non-trivial time?

An Early Lower Bound:

Theorem [Krajicek-Pudlak'1994]

Extended Frege systems are not automatable in time T(s), unless *n*-bit RSA cryptosystem can be broken in time T(poly(n)).

An Early Lower Bound:

Theorem [Krajicek-Pudlak'1994]

Extended Frege systems are not automatable in time T(s), unless *n*-bit RSA cryptosystem can be broken in time T(poly(n)).

An Early Upper Bound:

Theorem [Beame-Pitassi'1998] Tree-like Resolution *is* automatable in time $T(s) = s^{O(\log s)}$.

Beame-Pitassi Algorithm

- 1. guess the root literal ℓ (2*n* choices only)
- 2. recurse with parameter s/2 (abort the branch if it fails)
- 3. recurse with parameter s 1 (it must succeed).

イロト イヨト イヨト イヨト

$$T(n,s) \le 2nT(n-1,s/2) + T(n-1,s-1)$$

 $T(n,s) = n^{O(\log s)} \le s^{O(\log s)}.$

Non-Automatability of Resolution

Theorem [Atserias-Müller'2019][poly-time]Resolution is not automatable in time T(s),[poly-time]unless *n*-variable SAT is solvable in time T(poly(n))[P = NP].

Non-Automatability of Resolution

Theorem [Atserias-Müller'2019][poly-time]Resolution is not automatable in time T(s),[poly-time]unless *n*-variable SAT is solvable in time T(poly(n))[P = NP].

Theorem [de Rezende'2021] Tree-Like Resolution is not automatable in time $T(s) = s^{o(\log s)}$, unless *n*-variable SAT is solvable in randomized time $2^{o(n)}$.

Non-Automatability of Resolution

Theorem [Atserias-Müller'2019][poly-time]Resolution is not automatable in time T(s),[poly-time]unless *n*-variable SAT is solvable in time T(poly(n))[P = NP].

Theorem [de Rezende'2021]

Tree-Like Resolution is not automatable in time $T(s) = s^{o(\log s)}$, unless *n*-variable SAT is solvable in randomized time $2^{o(n)}$.

- Compare with Beame-Pitassi algorithm!
- Improved earlier results of [Alekhnovich-Razborov'2001]
- Introduced a new method for proving non-automatability
- Correctness of the reduction involves proving a lower bound!

Proof Strategy for NP-Hardness

We want a polynomial-time reduction:

from *n*-variable SAT to min proof-size approximation for Resolution (R).

$$F \xrightarrow{\operatorname{poly}(n) \text{ time}} G_F$$

Requirements:

- 1. If F is satisfiable, then $SIZE_R(G_F) \le poly(n)$.
- 2. If F is unsatisfiable, then SIZE_R(G_F) $\leq \exp(\Omega(n))$.

 $REF_{F,s}$ = "the CNF formula F has an R-refutation of length s" Variables:

$D_{u,i,b}$:	"line u contains variable x_i with sign $b \in \{0,1\}$ "
I _{u,j}	:	"line u is an initial assumption; the j -th clause of F "
$V_{u,i}$:	"line u is derived by resolving on variable x_i "
$L_{u,v}$:	"line u is derived using v as left assumption"
$R_{u,v}$:	"line <i>u</i> is derived using <i>v</i> as right assumption"
A_u	:	"line <i>u</i> is active; i.e., actually used in the proof"

Clauses (a sample):

$$\frac{\overline{A_{u}}}{A_{u}} \vee \overline{V_{u,i}} \vee \overline{L_{u,v}} \vee D_{v,i,1} \qquad \overline{A_{u}} \vee \overline{V_{u,i}} \vee \overline{R_{u,v}} \vee D_{v,i,0} \qquad \overline{D_{s,i,b}} \\
\dots \\
\dots \\$$

Requirement 1 : The Upper Bound

If F is satisfiable, then $SIZE_R(REF_{F,n^c}) \leq poly(n)$.

Proof idea:

Use a satisfying assignment α of F to nail down the refutation!

Proof sketch:

- Prove that every active line contains a literal satisfied by α .
- Concretely, derive the clauses

$$T_u := \overline{A_u} \vee \bigvee_{i=1}^n D_{u,i,\alpha(i)}$$
 for $u = 1, 2, \dots, L$.

• Produce empty clause by resolving T_s with A_s and the $\overline{D_{s,i,b}}$. QED

Requirement 2 : The Lower Bound

If F is unsatisfiable, then SIZE_R(REF_{F,n^c}) $\leq \exp(\Omega(n))$.

Proof idea:

Use a model β^* of REF_{*F*,2^{*n*}} to construct a collection of "pseudo-models" β for REF_{*F*,n^{*c*}</sup>.}

The Lower Bound in Three Steps

- Identify a set H of α such that $\mathsf{REF}_{F,s}|_{\alpha} \cong \mathsf{REF}_{F,s/2}$.
- Here: let α set 1/2 of all lines as inactive (but not the last).
- And let α also set all other variables of those lines.
- Identify a notion of weak clause made likely true by random α .
- Here: the clauses that mention more than n/2 lines.
- Calculation: $\Pr_{\alpha \in H}[C|_{\alpha} \neq 1] \leq (3/4)^{n/2}$.
- Prove that refutations of REF_{F,s/2} must contain weak clauses.
- Walk up the dag from empty clause to axioms, and do:
- Sustain a matching between active lines and the lines in β^* .
- The corresponding assignments are the "pseudo-models" β . QED

Theorem

Resolution is not automatable in time T(s), [poly-time] unless *n*-variable SAT is solvable in time T(poly(n)) [P = NP].

Theorem

Tree-Like Resolution is not automatable in time $T(s) = s^{o(\log s)}$, unless *n*-variable SAT is solvable in randomized time $2^{o(n)}$. We want a reduction:

from *n*-variable SAT

to min proof-size approximation for tree-like R (called R*).

$$F \xrightarrow{\exp(o(n)) \text{ time}} G_F$$

Requirements:

- 1. If F is satisfiable, then $SIZE_{R^*}(G_F) \leq \exp(O(\sqrt{n}))$.
- 2. If F is unsatisfiable, then SIZE_{R*}(G_F) $\leq \exp(\Omega(n))$.

Modification of the Formula G_F : Shallow REF

Key Observation:

In the "*F* is unsatisfiable" case, the model β^* of REF_{*F*,2^{*n*}} happens to be: tree-like and layered, and have depth *n*.

15 / 19

Modification of the Formula in More Details

- Modify the formula G_F ; now $\text{REF}_{F,s}|_{\gamma}$ with $s = 2^{\sqrt{n}}$.
- The γ restricts A, D, I, V, L, R in a way compatible with β*:
- Instead of arbitrary dag-depth, impose depth n.
- Instead of arbitrary structure, impose \sqrt{n} layers of depth \sqrt{n} .
- Instead of poly(n)-size layers, allow layers of size $2^{\sqrt{n}}$.
- Instead of full connectivity between layers, place expanders.
- Their bounded degree d ensures tree-like size $d^{\sqrt{n}} = 2^{O(\sqrt{n})}$.
- Their expansion property ensures matchability with β^* .

Reminder

Theorem

Resolution is not automatable in time T(s), [poly-time] unless *n*-variable SAT is solvable in time T(poly(n)) [P = NP].

Theorem Tree-Like Resolution is not automatable in time $T(s) = s^{o(\log s)}$, unless *n*-variable SAT is solvable in randomized time $2^{o(n)}$.

For Resolution specifically: Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

For Resolution specifically: Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

For Resolution specifically:

Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

Notes:

• Automatability is about short vs. not short refutability.

For Resolution specifically:

Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

- Automatability is about short vs. not short refutability.
- Weak automatability is about short vs. impossible refutability.

For Resolution specifically:

Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

- Automatability is about short vs. not short refutability.
- Weak automatability is about short vs. impossible refutability.
- Therefore: it cannot be harder than NP \cap co-NP.

For Resolution specifically:

Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

- Automatability is about short vs. not short refutability.
- Weak automatability is about short vs. impossible refutability.
- Therefore: it cannot be harder than NP \cap co-NP.
- For Resolution, the problem is PARITY GAMES hard [BPT].

For Resolution specifically:

Is it computationally feasible to distinguish satisfiable formulas from shortly refutable formulas?

Notes:

- Automatability is about short vs. not short refutability.
- Weak automatability is about short vs. impossible refutability.
- Therefore: it cannot be harder than NP \cap co-NP.
- For Resolution, the problem is PARITY GAMES hard [BPT].
- For (Extended) Frege, the problem is RSA-hard [KP,BPR].

イロト 不得 トイヨト イヨト 二日

END OF PART II AND OF TUTORIAL